WELCOME TO THE LIBRARY!!!
What are you looking for Book "Machine Learning For Earth Sciences" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
This textbook introduces the reader to Machine Learning (ML) applications in Earth Sciences. In detail, it starts by describing the basics of machine learning and its potentials in Earth Sciences to solve geological problems. It describes the main Python tools devoted to ML, the typival workflow of ML applications in Earth Sciences, and proceeds with reporting how ML algorithms work. The book provides many examples of ML application to Earth Sciences problems in many fields, such as the clustering and dimensionality reduction in petro-volcanological studies, the clustering of multi-spectral data, well-log data facies classification, and machine learning regression in petrology. Also, the book introduces the basics of parallel computing and how to scale ML models in the cloud. The book is devoted to Earth Scientists, at any level, from students to academics and professionals.
Product Details :
Genre |
: Science |
Author |
: Maurizio Petrelli |
Publisher |
: Springer Nature |
Release |
: 2023-09-22 |
File |
: 214 Pages |
ISBN-13 |
: 9783031351143 |
eBook Download
BOOK EXCERPT:
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Gustau Camps-Valls |
Publisher |
: John Wiley & Sons |
Release |
: 2021-08-16 |
File |
: 436 Pages |
ISBN-13 |
: 9781119646143 |
eBook Download
BOOK EXCERPT:
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Gustau Camps-Valls |
Publisher |
: John Wiley & Sons |
Release |
: 2021-08-18 |
File |
: 436 Pages |
ISBN-13 |
: 9781119646167 |
eBook Download
BOOK EXCERPT:
The Earth Sciences industry faces a new challenge - the need for accurate, efficient, and reliable methods to monitor and predict geological phenomena and environmental changes. As climate change, earthquakes, and other natural disasters become more frequent and severe, the necessity for advanced tools and techniques is paramount. Traditional methods often fall short in providing the precision and speed required to address these critical issues. Geologists and earth scientists who are grappling with the urgent problem of utilizing artificial intelligence (AI) to revolutionize their field, will find the solution within the pages of Novel AI Applications for Advancing Earth Sciences. This book offers the research community concepts expanding upon the fusion of AI technology with earth sciences. By leveraging advanced AI tools, such as convolutional neural networks, support vector machines, artificial neural networks, and the potential of remote sensing satellites, this book transforms the identification of geological features, geological mapping, soil classification, and gas detection. Scientists can now predict earthquakes and assess the probability of climate change with unprecedented accuracy. Additionally, the book explains how the optimization of algorithms for specific tasks substantially reduces the time complexity of earth observations, leading to an unprecedented leap in accuracy and efficiency.
Product Details :
Genre |
: Science |
Author |
: Yadav, Sudesh |
Publisher |
: IGI Global |
Release |
: 2023-12-29 |
File |
: 428 Pages |
ISBN-13 |
: 9798369318515 |
eBook Download
BOOK EXCERPT:
Artificial Intelligence in Earth Science: Best Practices and Fundamental Challenges provides a comprehensive, step-by-step guide to AI workflows for solving problems in Earth Science. The book focuses on the most challenging problems in applying AI in Earth system sciences, such as training data preparation, model selection, hyperparameter tuning, model structure optimization, spatiotemporal generalization, transforming model results into products, and explaining trained models. In addition, it provides full-stack workflow tutorials to help walk readers through the whole process, regardless of previous AI experience. The book tackles the complexity of Earth system problems in AI engineering, fully guiding geoscientists who are planning to implement AI in their daily work. - Provides practical, step-by-step guides for Earth Scientists who are interested in implementing AI techniques in their work - Features case studies to show real-world examples of techniques described in the book - Includes additional elements to help readers who are new to AI, including end-of-chapter, key concept bulleted lists that concisely cover key concepts in the chapter
Product Details :
Genre |
: Science |
Author |
: Ziheng Sun |
Publisher |
: Elsevier |
Release |
: 2023-04-27 |
File |
: 430 Pages |
ISBN-13 |
: 9780323972161 |
eBook Download
BOOK EXCERPT:
From the Foreword: "While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences." --Vipin Kumar, University of Minnesota Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.
Product Details :
Genre |
: Computers |
Author |
: Ashok N. Srivastava |
Publisher |
: CRC Press |
Release |
: 2017-08-01 |
File |
: 238 Pages |
ISBN-13 |
: 9781498703888 |
eBook Download
BOOK EXCERPT:
This open access book provides state-of-the-art theory and application in geostatistics. Geostatistics Toronto 2021 includes 28 short abstracts, 18 extended abstracts, and 7 full articles in the fields of geostatistical theory, multi-point statistics, earth sciences, mining, optimal drilling, domains, seismic, classification uncertainty risk, and artificial intelligence and machine learning. All contributions were presented at the 11th International Geostatistics Congress held in virtually at Toronto, Canada, from July 12-16, 2021. This book is valuable to researchers, scientists, and practitioners in geology, mining, petroleum, geometallurgy, mathematics, and statistics.
Product Details :
Genre |
: Science |
Author |
: Sebastian Alejandro Avalos Sotomayor |
Publisher |
: Springer Nature |
Release |
: 2023-02-23 |
File |
: 261 Pages |
ISBN-13 |
: 9783031198458 |
eBook Download
BOOK EXCERPT:
This book thoroughly covers the remote sensing visualization and analysis techniques based on computational imaging and vision in Earth science. Remote sensing is considered a significant information source for monitoring and mapping natural and man-made land through the development of sensor resolutions that committed different Earth observation platforms. The book includes related topics for the different systems, models, and approaches used in the visualization of remote sensing images. It offers flexible and sophisticated solutions for removing uncertainty from the satellite data. It introduces real time big data analytics to derive intelligence systems in enterprise earth science applications. Furthermore, the book integrates statistical concepts with computer-based geographic information systems (GIS). It focuses on image processing techniques for observing data together with uncertainty information raised by spectral, spatial, and positional accuracy of GPS data. The book addresses several advanced improvement models to guide the engineers in developing different remote sensing visualization and analysis schemes. Highlights on the advanced improvement models of the supervised/unsupervised classification algorithms, support vector machines, artificial neural networks, fuzzy logic, decision-making algorithms, and Time Series Model and Forecasting are addressed. This book guides engineers, designers, and researchers to exploit the intrinsic design remote sensing systems. The book gathers remarkable material from an international experts' panel to guide the readers during the development of earth big data analytics and their challenges.
Product Details :
Genre |
: Science |
Author |
: Nilanjan Dey |
Publisher |
: Springer |
Release |
: 2018-05-23 |
File |
: 163 Pages |
ISBN-13 |
: 9783319899237 |
eBook Download
BOOK EXCERPT:
Clouds and Their Climatic Impacts Clouds are an influential and complex element of Earth’s climate system. They evolve rapidly in time and exist over small spatial scales, but also affect global radiative balance and large-scale circulations. With more powerful models and extensive observations now at our disposal, the climate impact of clouds is receiving ever more research attention. Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation presents an overview of our current understanding on various types of clouds and cloud systems and their multifaceted role in the radiative budget, circulation patterns, and rainfall. Volume highlights include: Interactions of aerosol with both liquid and ice clouds Surface and atmospheric cloud radiative feedbacks and effects Arctic, extratropical, and tropical clouds Cloud-circulation coupling at global, meso, and micro scales Precipitation efficiency, phase, and measurements The role of machine learning in understanding clouds and climate The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Product Details :
Genre |
: Science |
Author |
: Sylvia Sullivan |
Publisher |
: John Wiley & Sons |
Release |
: 2023-12-19 |
File |
: 371 Pages |
ISBN-13 |
: 9781119700319 |
eBook Download
BOOK EXCERPT:
In our rapidly evolving digital landscape, the threat of natural disasters looms large, necessitating innovative solutions for effective disaster management. Integrating Artificial Intelligence (AI) and the Internet of Things (IoT) presents a transformative approach to addressing these challenges. However, despite the potential benefits, the field needs more comprehensive resources that explore the full extent of AI and IoT applications in disaster management. AI and IoT for Proactive Disaster Management fills that gap by examining how AI and IoT can revolutionize disaster preparedness, response, and recovery. It offers a deep dive into AI frameworks, IoT infrastructures, and the synergy of these technologies in predicting and managing natural disasters. Ideal for undergraduate and postgraduate students, academicians, research scholars, industry professionals, and technology enthusiasts, this book serves as a comprehensive guide to understanding the intersection of AI, IoT, and disaster management. By showcasing cutting-edge research and practical applications, this book equips readers with the knowledge and tools to harness AI and IoT for more efficient and effective disaster management strategies.
Product Details :
Genre |
: Computers |
Author |
: Ouaissa, Mariyam |
Publisher |
: IGI Global |
Release |
: 2024-05-06 |
File |
: 317 Pages |
ISBN-13 |
: 9798369338971 |