Mapped Vector Basis Functions For Electromagnetic Integral Equations

eBook Download

BOOK EXCERPT:

The method-of-moments solution of the electric field and magnetic field integral equations (EFIE and MFIE) is extended to conducting objects modeled with curved cells. These techniques are important for electromagnetic scattering, antenna, radar signature, and wireless communication applications. Vector basis functions of the divergence-conforming and curl-conforming types are explained, and specific interpolatory and hierarchical basis functions are reviewed. Procedures for mapping these basis functions from a reference domain to a curved cell, while preserving the desired continuity properties on curved cells, are discussed in detail. For illustration, results are presented for examples that employ divergence-conforming basis functions with the EFIE and curl-conforming basis functions with the MFIE. The intended audience includes electromagnetic engineers with some previous familiarity with numerical techniques.

Product Details :

Genre : Boundary element methods
Author : Andrew F. Peterson
Publisher : Morgan & Claypool Publishers
Release : 2006
File : 125 Pages
ISBN-13 : 9781598290127


Mapped Vector Basis Functions For Electromagnetic Integral Equations

eBook Download

BOOK EXCERPT:

The method-of-moments solution of the electric field and magnetic field integral equations (EFIE and MFIE) is extended to conducting objects modeled with curved cells. These techniques are important for electromagnetic scattering, antenna, radar signature, and wireless communication applications. Vector basis functions of the divergence-conforming and curl-conforming types are explained, and specific interpolatory and hierarchical basis functions are reviewed. Procedures for mapping these basis functions from a reference domain to a curved cell, while preserving the desired continuity properties on curved cells, are discussed in detail. For illustration, results are presented for examples that employ divergence-conforming basis functions with the EFIE and curl-conforming basis functions with the MFIE. The intended audience includes electromagnetic engineers with some previous familiarity with numerical techniques.

Product Details :

Genre : Technology & Engineering
Author : Andrew Peterson
Publisher : Springer Nature
Release : 2022-06-01
File : 115 Pages
ISBN-13 : 9783031016868


Green S Function Integral Equation Methods In Nano Optics

eBook Download

BOOK EXCERPT:

This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics

Product Details :

Genre : Technology & Engineering
Author : Thomas M. Søndergaard
Publisher : CRC Press
Release : 2019-01-30
File : 430 Pages
ISBN-13 : 9781351260190


Analysis And Implementation Of Isogeometric Boundary Elements For Electromagnetism

eBook Download

BOOK EXCERPT:

This book presents a comprehensive mathematical and computational approach for solving electromagnetic problems of practical relevance, such as electromagnetic scattering and the cavity problems. After an in-depth introduction to the mathematical foundations of isogeometric analysis, which discusses how to conduct higher-order simulations efficiently and without the introduction of geometrical errors, the book proves quasi-optimal approximation properties for all trace spaces of the de Rham sequence, and demonstrates inf-sup stability of the isogeometric discretisation of the electric field integral equation (EFIE). Theoretical properties and algorithms are described in detail. The algorithmic approach is, in turn, validated through a series of numerical experiments aimed at solving a set of electromagnetic scattering problems. In the last part of the book, the boundary element method is combined with a novel eigenvalue solver, a so-called contour integral method. An algorithm is presented, together with a set of successful numerical experiments, showing that the eigenvalue solver benefits from the high orders of convergence offered by the boundary element approach. Last, the resulting software, called BEMBEL (Boundary Element Method Based Engineering Library), is reviewed: the user interface is presented, while the underlying design considerations are explained in detail. Given its scope, this book bridges an important gap between numerical analysis and engineering design of electromagnetic devices.

Product Details :

Genre : Technology & Engineering
Author : Felix Wolf
Publisher : Springer Nature
Release : 2020-11-30
File : 139 Pages
ISBN-13 : 9783030619398


Numerical Methods In Photonics

eBook Download

BOOK EXCERPT:

Simulation and modeling using numerical methods is one of the key instruments in any scientific work. In the field of photonics, a wide range of numerical methods are used for studying both fundamental optics and applications such as design, development, and optimization of photonic components. Modeling is key for developing improved photonic devices and reducing development time and cost. Choosing the appropriate computational method for a photonics modeling problem requires a clear understanding of the pros and cons of the available numerical methods. Numerical Methods in Photonics presents six of the most frequently used methods: FDTD, FDFD, 1+1D nonlinear propagation, modal method, Green’s function, and FEM. After an introductory chapter outlining the basics of Maxwell’s equations, the book includes self-contained chapters that focus on each of the methods. Each method is accompanied by a review of the mathematical principles in which it is based, along with sample scripts, illustrative examples of characteristic problem solving, and exercises. MATLAB® is used throughout the text. This book provides a solid basis to practice writing your own codes. The theoretical formulation is complemented by sets of exercises, which allow you to grasp the essence of the modeling tools.

Product Details :

Genre : Science
Author : Andrei V. Lavrinenko
Publisher : CRC Press
Release : 2018-09-03
File : 300 Pages
ISBN-13 : 9781351832007


Newsletter

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Electromagnetism
Author :
Publisher :
Release : 1995
File : 528 Pages
ISBN-13 : PSU:000047755550


Antenna Engineering Handbook Fourth Edition

eBook Download

BOOK EXCERPT:

This edition contains 21 new chapters and a bonus eight page color insert, and new material on specialty antennas such as wideband patch antennas, antenna arrays, smart antennas, and more.

Product Details :

Genre : Science
Author : John Volakis
Publisher :
Release : 2007-06-07
File : 1820 Pages
ISBN-13 : UOM:39015064967774


Antenna Engineering Handbook

eBook Download

BOOK EXCERPT:

The gold-standard reference on the design and application of classic and modern antennas—fully updated to reflect the latest advances and technologiesThis new edition of the “bible of antenna engineering” has been updated to provide start-to-finish coverage of the latest innovations in antenna design and application. You will find in-depth discussion of antennas used in modern communication systems, mobile and personal wireless technologies, satellites, radar deployments, flexible electronics, and other emerging technologies, including 5G, terahertz, and wearable electronics. Antenna Engineering Handbook, Fifth Edition, is bolstered by real-world examples, hundreds of illustrations, and an emphasis on the practical aspects of antennas.Featuring 60 chapters and contributions from more than 80 renowned experts, this acclaimed resource is edited by one of the world’s leading antenna authorities. This edition features all of the classic antenna types, plus new and emerging designs, with 13 all-new chapters and important updates to nearly all chapters from past editions.Antenna Engineering Handbook, Fifth Edition, clearly explains cutting-edge applications in WLANs, automotive systems, PDAs, and handheld devices, making it an indispensable companion for today’s antenna practitioners and developers.Coverage includes:•Antenna basics and classic antennas•Design approaches for antennas and arrays•Wideband and multiband antennas•Antennas for mobile devices and PDAs, automotive applications, and aircraft•Base station and smart antennas•Beamforming and 5G antennas•Millimeter-wave and terahertz antennas•Flexible, wearable, thin film, origami, dielectric, and on-chip antennas•MIMO antennas and phased arrays•Direction-finding and GPS antennas•Active antennas•Low-profile wideband antennas•Nanoantennas•Reflectors and other satellite and radio-telescope antennas•Low-frequency, HF, VHF, UHF, ECM, and ESM antennas•Impedance-matching techniques and material characteristics•Metastructured and frequency selective surfaces•Propagation and guided structures•Computational techniques and toolsets•Indoor and outdoor measurements

Product Details :

Genre : Technology & Engineering
Author : John Volakis
Publisher : McGraw Hill Professional
Release : 2018-11-05
File : 1424 Pages
ISBN-13 : 9781259644702


Radio Science

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Radio meteorology
Author :
Publisher :
Release : 1999
File : 228 Pages
ISBN-13 : UIUC:30112106705921


Computer Modeling In Engineering Sciences

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Computer simulation
Author :
Publisher :
Release : 2004
File : 232 Pages
ISBN-13 : UCSD:31822022869812