Mathematical Foundations Of Finite Elements And Iterative Solvers

eBook Download

BOOK EXCERPT:

“This book combines an updated look, at an advanced level, of the mathematical theory of the finite element method (including some important recent developments), and a presentation of many of the standard iterative methods for the numerical solution of the linear system of equations that results from finite element discretization, including saddle point problems arising from mixed finite element approximation. For the reader with some prior background in the subject, this text clarifies the importance of the essential ideas and provides a deeper understanding of how the basic concepts fit together.” — Richard S. Falk, Rutgers University “Students of applied mathematics, engineering, and science will welcome this insightful and carefully crafted introduction to the mathematics of finite elements and to algorithms for iterative solvers. Concise, descriptive, and entertaining, the text covers all of the key mathematical ideas and concepts dealing with finite element approximations of problems in mechanics and physics governed by partial differential equations while interweaving basic concepts on Sobolev spaces and basic theorems of functional analysis presented in an effective tutorial style.” — J. Tinsley Oden, The University of Texas at Austin This textbook describes the mathematical principles of the finite element method, a technique that turns a (linear) partial differential equation into a discrete linear system, often amenable to fast linear algebra. Reflecting the author’s decade of experience in the field, Mathematical Foundations of Finite Elements and Iterative Solvers examines the crucial interplay between analysis, discretization, and computations in modern numerical analysis; furthermore, it recounts historical developments leading to current state-of-the-art techniques. While self-contained, this textbook provides a clear and in-depth discussion of several topics, including elliptic problems, continuous Galerkin methods, iterative solvers, advection-diffusion problems, and saddle point problems. Accessible to readers with a beginning background in functional analysis and linear algebra, this text can be used in graduate-level courses on advanced numerical analysis, data science, numerical optimization, and approximation theory. Professionals in numerical analysis and finite element methods will also find the book of interest.

Product Details :

Genre : Mathematics
Author : SCI085000
Publisher : SIAM
Release : 2022-06-27
File : 186 Pages
ISBN-13 : 9781611977097


Mathematical Theory Of Finite Elements

eBook Download

BOOK EXCERPT:

This book discusses the foundations of the mathematical theory of finite element methods. The focus is on two subjects: the concept of discrete stability, and the theory of conforming elements forming the exact sequence. Both coercive and noncoercive problems are discussed.. Following the historical path of development, the author covers the Ritz and Galerkin methods to Mikhlin’s theory, followed by the Lax–Milgram theorem and Cea’s lemma to the Babuska theorem and Brezzi’s theory. He finishes with an introduction to the discontinuous Petrov–Galerkin (DPG) method with optimal test functions. Based on the author’s personal lecture notes for a popular version of his graduate course on mathematical theory of finite elements, the book includes a unique exposition of the concept of discrete stability and the means to guarantee it, a coherent presentation of finite elements forming the exact grad-curl-div sequence, and an introduction to the DPG method. Intended for graduate students in computational science, engineering, and mathematics programs, Mathematical Theory of Finite Elements is also appropriate for graduate mathematics and mathematically oriented engineering students. Instructors will find the book useful for courses in real analysis, functional analysis, energy (Sobolev) spaces, and Hilbert space methods for PDEs.

Product Details :

Genre : Mathematics
Author : Leszek F. Demkowicz
Publisher : SIAM
Release : 2023-09-22
File : 217 Pages
ISBN-13 : 9781611977738


Enhanced Introduction To Finite Elements For Engineers

eBook Download

BOOK EXCERPT:

The book presents the fundamentals of the Galerkin Finite Element Method for linear boundary value problems from an engineering perspective. Emphasis is given to the theoretical foundation of the method rooted in Functional Analysis using a language accessible to engineers. The book discusses standard procedures for applying the method to time-dependent and nonlinear problems and addresses essential aspects of applying the method to non-linear dynamics and multi-physics problems. It also provides several hand-calculation exercises as well as specific computer exercises with didactic character. About one fourth of the exercises reveals common pitfalls and sources of errors when applying the method. Carefully selected literature recommendations for further studies are provided at the end of each chapter. The reader is expected to have prior knowledge in engineering mathematics, in particular real analysis and linear algebra. The elements of algebra and analysis required in the main part of the book are presented in corresponding sections of the appendix. Students should already have an education in strength of materials or another engineering field, such as heat or mass transport, which discusses boundary value problems for simple geometries and boundary conditions.

Product Details :

Genre : Science
Author : Uwe Mühlich
Publisher : Springer Nature
Release : 2023-05-31
File : 205 Pages
ISBN-13 : 9783031304224


Nonlocal Integral Equation Continuum Models

eBook Download

BOOK EXCERPT:

The book presents the state of the art of nonlocal modeling and discretization and provides a practical introduction to nonlocal modeling for readers who are not familiar with such models. These models have recently become a viable alternative to classical partial differential equations when the latter are unable to capture effects such as discontinuities and multiscale behavior in a system of interest. Because of their integral nature, nonlocal operators allow for the relaxation of regularity requirements on the solution and thus allow for the capture of multiscale effects, the result of which is their successful use in many scientific and engineering applications. The book also provides a thorough analysis and numerical treatment of nonstandard nonlocal models, focusing on both well-known and nonstandard interaction neighborhoods. In addition, the book delivers an extensive practical treatment of the implementation of discretization strategies via finite element methods. Numerous figures are provided as concrete examples to illustrate both the analytic and computational results. Nonlocal Integral Equation Continuum Models: Nonstandard Interaction Neighborhoods and Finite Element Discretizations is intended for mathematical and application researchers interested in alternatives to using partial differential equation models that better describe the phenomena they are interested in. The book will also be of use to computational scientists and engineers who need to make sense of how to use available software, improve existing software, or develop new software tailored to their application interests.

Product Details :

Genre : Mathematics
Author : Marta D'Elia
Publisher : SIAM
Release : 2024-09-12
File : 187 Pages
ISBN-13 : 9781611978056


Implementation Of Finite Element Methods For Navier Stokes Equations

eBook Download

BOOK EXCERPT:

In structure mechanics analysis, finite element methods are now well estab lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977». (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients,l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.

Product Details :

Genre : Science
Author : F. Thomasset
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 168 Pages
ISBN-13 : 9783642870477


A Ramble Through Probability

eBook Download

BOOK EXCERPT:

Measure theory and measure-theoretic probability are fascinating subjects. Proofs describing profound ways to reason lead to results that are frequently startling, beautiful, and useful. Measure theory and probability also play roles in the development of pure and applied mathematics, statistics, engineering, physics, and finance. Indeed, it is difficult to overstate their importance in the quantitative disciplines. This book traces an eclectic path through the fundamentals of the topic to make the material accessible to a broad range of students. A Ramble through Probability: How I Learned to Stop Worrying and Love Measure Theory brings together the key elements and applications in a unified presentation aimed at developing intuition; contains an extensive collection of examples that illustrate, explain, and apply the theories; and is supplemented with videos containing commentary and explanations of select proofs on an ancillary website. This book is intended for graduate students in engineering, mathematics, science, and statistics. Researchers who need to use probability theory will also find it useful. It is appropriate for graduate-level courses on measure theory and/or probability theory.

Product Details :

Genre : Mathematics
Author : Samopriya Basu
Publisher : SIAM
Release : 2024-03-06
File : 620 Pages
ISBN-13 : 9781611977820


Uncertainty Quantification

eBook Download

BOOK EXCERPT:

Uncertainty quantification serves a fundamental role when establishing the predictive capabilities of simulation models. This book provides a comprehensive and unified treatment of the mathematical, statistical, and computational theory and methods employed to quantify uncertainties associated with models from a wide range of applications. Expanded and reorganized, the second edition includes advances in the field and provides a comprehensive sensitivity analysis and uncertainty quantification framework for models from science and engineering. It contains new chapters on random field representations, observation models, parameter identifiability and influence, active subspace analysis, and statistical surrogate models, and a completely revised chapter on local sensitivity analysis. Other updates to the second edition are the inclusion of over 100 exercises and many new examples — several of which include data — and UQ Crimes listed throughout the text to identify common misconceptions and guide readers entering the field. Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition is intended for advanced undergraduate and graduate students as well as researchers in mathematics, statistics, engineering, physical and biological sciences, operations research, and computer science. Readers are assumed to have a basic knowledge of probability, linear algebra, differential equations, and introductory numerical analysis. The book can be used as a primary text for a one-semester course on sensitivity analysis and uncertainty quantification or as a supplementary text for courses on surrogate and reduced-order model construction and parameter identifiability analysis.

Product Details :

Genre : Mathematics
Author : Ralph C. Smith
Publisher : SIAM
Release : 2024-09-13
File : 571 Pages
ISBN-13 : 9781611977844


Advanced Reduced Order Methods And Applications In Computational Fluid Dynamics

eBook Download

BOOK EXCERPT:

Reduced order modeling is an important, growing field in computational science and engineering, and this is the first book to address the subject in relation to computational fluid dynamics. It focuses on complex parametrization of shapes for their optimization and includes recent developments in advanced topics such as turbulence, stability of flows, inverse problems, optimization, and flow control, as well as applications. This book will be of interest to researchers and graduate students in the field of reduced order modeling.

Product Details :

Genre : Mathematics
Author : Gianluigi Rozza
Publisher : SIAM
Release : 2022-11-21
File : 501 Pages
ISBN-13 : 9781611977257


Elliptic Problem Solvers

eBook Download

BOOK EXCERPT:

Elliptic Problem Solvers provides information pertinent to some aspects of the numerical solution of elliptic partial differential equations. This book presents the advances in developing elliptic problem solvers and analyzes their performance. Organized into 40 chapters, this book begins with an overview of the approximate solution of using a standard Galerkin method employing piecewise linear triangular finite elements. This text then defines the types of vector architecture and discusses the variation in performance that can occur on a vector processor as a function of algorithm and implementation. Other chapters consider the implementation of techniques for elliptical problems. This book discusses as well the six techniques for the solution of nonsymmetric linear systems arising from finite difference discretization of the convection-diffusion equation. The final chapter deals with the basic semiconductor device equations. This book is a valuable resource for electrical and computer engineers, scientists, computer programmers, pure mathematicians, and research workers.

Product Details :

Genre : Mathematics
Author : Martin H. Schultz
Publisher : Academic Press
Release : 2014-05-10
File : 459 Pages
ISBN-13 : 9781483259123


Automation Of Finite Element Methods

eBook Download

BOOK EXCERPT:

New finite elements are needed as well in research as in industry environments for thedevelopment of virtual prediction techniques. The design and implementation of novel finiteelements for specific purposes is a tedious and time consuming task, especially for nonlinearformulations. The automation of this process can help to speed up this processconsiderably since the generation of the final computer code can be accelerated by order ofseveral magnitudes.This book provides the reader with the required knowledge needed to employ modernautomatic tools like AceGen within solid mechanics in a successful way. It covers the rangefrom the theoretical background, algorithmic treatments to many different applications. Thebook is written for advanced students in the engineering field and for researchers ineducational and industrial environments.

Product Details :

Genre : Technology & Engineering
Author : Jože Korelc
Publisher : Springer
Release : 2016-06-08
File : 367 Pages
ISBN-13 : 9783319390055