WELCOME TO THE LIBRARY!!!
What are you looking for Book "Measure Theory And Integration" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
Significantly revised and expanded, this authoritative reference/text comprehensively describes concepts in measure theory, classical integration, and generalized Riemann integration of both scalar and vector types-providing a complete and detailed review of every aspect of measure and integration theory using valuable examples, exercises, and applications. With more than 170 references for further investigation of the subject, this Second Edition provides more than 60 pages of new information, as well as a new chapter on nonabsolute integrals contains extended discussions on the four basic results of Banach spaces presents an in-depth analysis of the classical integrations with many applications, including integration of nonmeasurable functions, Lebesgue spaces, and their properties details the basic properties and extensions of the Lebesgue-Carathéodory measure theory, as well as the structure and convergence of real measurable functions covers the Stone isomorphism theorem, the lifting theorem, the Daniell method of integration, and capacity theory Measure Theory and Integration, Second Edition is a valuable reference for all pure and applied mathematicians, statisticians, and mathematical analysts, and an outstanding text for all graduate students in these disciplines.
Product Details :
Genre |
: Mathematics |
Author |
: M.M. Rao |
Publisher |
: CRC Press |
Release |
: 2018-10-03 |
File |
: 790 Pages |
ISBN-13 |
: 9781482258103 |
eBook Download
BOOK EXCERPT:
Product Details :
Genre |
: Convergence |
Author |
: Debarra G. |
Publisher |
: New Age International |
Release |
: 1981 |
File |
: 244 Pages |
ISBN-13 |
: 0852261861 |
eBook Download
BOOK EXCERPT:
This self-contained treatment of measure and integration begins with a brief review of the Riemann integral and proceeds to a construction of Lebesgue measure on the real line. From there the reader is led to the general notion of measure, to the construction of the Lebesgue integral on a measure space, and to the major limit theorems, such as the Monotone and Dominated Convergence Theorems. The treatment proceeds to $Lp$ spaces, normed linear spaces that are shown to be complete (i.e., Banach spaces) due to the limit theorems. Particular attention is paid to $L2$ spaces as Hilbert spaces, with a useful geometrical structure. Having gotten quickly to the heart of the matter, the text proceeds to broaden its scope. There are further constructions of measures, including Lebesgue measure on $n$-dimensional Euclidean space. There are also discussions of surface measure, and more generally of Riemannian manifolds and the measures they inherit, and an appendix on the integration ofdifferential forms. Further geometric aspects are explored in a chapter on Hausdorff measure. The text also treats probabilistic concepts, in chapters on ergodic theory, probability spaces and random variables, Wiener measure and Brownian motion, and martingales. This text will prepare graduate students for more advanced studies in functional analysis, harmonic analysis, stochastic analysis, and geometric measure theory.
Product Details :
Genre |
: Mathematics |
Author |
: Michael Eugene Taylor |
Publisher |
: American Mathematical Soc. |
Release |
: |
File |
: 346 Pages |
ISBN-13 |
: 082187246X |
eBook Download
BOOK EXCERPT:
This textbook contains a detailed and thorough exposition of topics in measure theory and integration. With abundant solved examples and more than 200 problems, the book is written in a motivational and student-friendly manner. Targeted to senior undergraduate and graduate courses in mathematics, it provides a detailed and thorough explanation of all the concepts. Suitable for independent study, the book, the first of the three volumes, contains topics on measure theory, measurable functions, Lebesgue integration, Lebesgue spaces, and abstract measure theory.
Product Details :
Genre |
: Mathematics |
Author |
: Ammar Khanfer |
Publisher |
: Springer Nature |
Release |
: 2023-09-08 |
File |
: 237 Pages |
ISBN-13 |
: 9789819928828 |
eBook Download
BOOK EXCERPT:
This text approaches integration via measure theory as opposed to measure theory via integration, an approach which makes it easier to grasp the subject. Apart from its central importance to pure mathematics, the material is also relevant to applied mathematics and probability, with proof of the mathematics set out clearly and in considerable detail. Numerous worked examples necessary for teaching and learning at undergraduate level constitute a strong feature of the book, and after studying statements of results of the theorems, students should be able to attempt the 300 problem exercises which test comprehension and for which detailed solutions are provided. - Approaches integration via measure theory, as opposed to measure theory via integration, making it easier to understand the subject - Includes numerous worked examples necessary for teaching and learning at undergraduate level - Detailed solutions are provided for the 300 problem exercises which test comprehension of the theorems provided
Product Details :
Genre |
: Mathematics |
Author |
: G De Barra |
Publisher |
: Elsevier |
Release |
: 2003-07-01 |
File |
: 240 Pages |
ISBN-13 |
: 9780857099525 |
eBook Download
BOOK EXCERPT:
This book gives a straightforward introduction to the field as it is nowadays required in many branches of analysis and especially in probability theory. The first three chapters (Measure Theory, Integration Theory, Product Measures) basically follow the clear and approved exposition given in the author's earlier book on "Probability Theory and Measure Theory". Special emphasis is laid on a complete discussion of the transformation of measures and integration with respect to the product measure, convergence theorems, parameter depending integrals, as well as the Radon-Nikodym theorem. The final chapter, essentially new and written in a clear and concise style, deals with the theory of Radon measures on Polish or locally compact spaces. With the main results being Luzin's theorem, the Riesz representation theorem, the Portmanteau theorem, and a characterization of locally compact spaces which are Polish, this chapter is a true invitation to study topological measure theory. The text addresses graduate students, who wish to learn the fundamentals in measure and integration theory as needed in modern analysis and probability theory. It will also be an important source for anyone teaching such a course.
Product Details :
Genre |
: Mathematics |
Author |
: Heinz Bauer |
Publisher |
: Walter de Gruyter |
Release |
: 2011-04-20 |
File |
: 249 Pages |
ISBN-13 |
: 9783110866209 |
eBook Download
BOOK EXCERPT:
This book giving an exposition of the foundations of modern measure theory offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course, and, finally, more specialized topics partly covered by more than 850 exercises with detailed hints and references. Bibliographical comments and an extensive bibliography with 2000 works covering more than a century are provided.
Product Details :
Genre |
: Mathematics |
Author |
: Vladimir I. Bogachev |
Publisher |
: Springer Science & Business Media |
Release |
: 2007-01-15 |
File |
: 1075 Pages |
ISBN-13 |
: 9783540345145 |
eBook Download
BOOK EXCERPT:
This textbook provides a thorough introduction to measure and integration theory, fundamental topics of advanced mathematical analysis. Proceeding at a leisurely, student-friendly pace, the authors begin by recalling elementary notions of real analysis before proceeding to measure theory and Lebesgue integration. Further chapters cover Fourier series, differentiation, modes of convergence, and product measures. Noteworthy topics discussed in the text include Lp spaces, the Radon–Nikodým Theorem, signed measures, the Riesz Representation Theorem, and the Tonelli and Fubini Theorems. This textbook, based on extensive teaching experience, is written for senior undergraduate and beginning graduate students in mathematics. With each topic carefully motivated and hints to more than 300 exercises, it is the ideal companion for self-study or use alongside lecture courses.
Product Details :
Genre |
: Mathematics |
Author |
: Satish Shirali |
Publisher |
: Springer Nature |
Release |
: 2019-09-17 |
File |
: 609 Pages |
ISBN-13 |
: 9783030187477 |
eBook Download
BOOK EXCERPT:
An accessible, clearly organized survey of the basic topics of measure theory for students and researchers in mathematics, statistics, and physics In order to fully understand and appreciate advanced probability, analysis, and advanced mathematical statistics, a rudimentary knowledge of measure theory and like subjects must first be obtained. The Theory of Measures and Integration illuminates the fundamental ideas of the subject-fascinating in their own right-for both students and researchers, providing a useful theoretical background as well as a solid foundation for further inquiry. Eric Vestrup's patient and measured text presents the major results of classical measure and integration theory in a clear and rigorous fashion. Besides offering the mainstream fare, the author also offers detailed discussions of extensions, the structure of Borel and Lebesgue sets, set-theoretic considerations, the Riesz representation theorem, and the Hardy-Littlewood theorem, among other topics, employing a clear presentation style that is both evenly paced and user-friendly. Chapters include: * Measurable Functions * The Lp Spaces * The Radon-Nikodym Theorem * Products of Two Measure Spaces * Arbitrary Products of Measure Spaces Sections conclude with exercises that range in difficulty between easy "finger exercises"and substantial and independent points of interest. These more difficult exercises are accompanied by detailed hints and outlines. They demonstrate optional side paths in the subject as well as alternative ways of presenting the mainstream topics. In writing his proofs and notation, Vestrup targets the person who wants all of the details shown up front. Ideal for graduate students in mathematics, statistics, and physics, as well as strong undergraduates in these disciplines and practicing researchers, The Theory of Measures and Integration proves both an able primary text for a real analysis sequence with a focus on measure theory and a helpful background text for advanced courses in probability and statistics.
Product Details :
Genre |
: Mathematics |
Author |
: Eric M. Vestrup |
Publisher |
: John Wiley & Sons |
Release |
: 2009-09-25 |
File |
: 622 Pages |
ISBN-13 |
: 9780470317952 |
eBook Download
BOOK EXCERPT:
When the first edition of this textbook published in 2011, it constituted a substantial revision of the best-selling Birkhäuser title by the same author, A Concise Introduction to the Theory of Integration. Appropriate as a primary text for a one-semester graduate course in integration theory, this GTM is also useful for independent study. A complete solutions manual is available for instructors who adopt the text for their courses. This second edition has been revised as follows: §2.2.5 and §8.3 have been substantially reworked. New topics have been added. As an application of the material about Hermite functions in §7.3.2, the author has added a brief introduction to Schwartz's theory of tempered distributions in §7.3.4. Section §7.4 is entirely new and contains applications, including the Central Limit Theorem, of Fourier analysis to measures. Related to this are subsections §8.2.5 and §8.2.6, where Lévy's Continuity Theorem and Bochner's characterization of the Fourier transforms of Borel probability on RN are proven. Subsection 8.1.2 is new and contains a proof of the Hahn Decomposition Theorem. Finally, there are several new exercises, some covering material from the original edition and others based on newly added material.
Product Details :
Genre |
: Mathematics |
Author |
: Daniel W. Stroock |
Publisher |
: Springer Nature |
Release |
: 2020-11-24 |
File |
: 296 Pages |
ISBN-13 |
: 9783030584788 |