Monte Carlo Methods And Stochastic Processes

eBook Download

BOOK EXCERPT:

Developed from the author’s course at the Ecole Polytechnique, Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear focuses on the simulation of stochastic processes in continuous time and their link with partial differential equations (PDEs). It covers linear and nonlinear problems in biology, finance, geophysics, mechanics, chemistry, and other application areas. The text also thoroughly develops the problem of numerical integration and computation of expectation by the Monte-Carlo method. The book begins with a history of Monte-Carlo methods and an overview of three typical Monte-Carlo problems: numerical integration and computation of expectation, simulation of complex distributions, and stochastic optimization. The remainder of the text is organized in three parts of progressive difficulty. The first part presents basic tools for stochastic simulation and analysis of algorithm convergence. The second part describes Monte-Carlo methods for the simulation of stochastic differential equations. The final part discusses the simulation of non-linear dynamics.

Product Details :

Genre : Mathematics
Author : Emmanuel Gobet
Publisher : CRC Press
Release : 2016-09-15
File : 310 Pages
ISBN-13 : 9781498746236


Numerical Methods For Stochastic Processes

eBook Download

BOOK EXCERPT:

Gives greater rigor to numerical treatments of stochastic models. Contains Monte Carlo and quasi-Monte Carlo techniques, simulation of major stochastic procedures, deterministic methods adapted to Markovian problems and special problems related to stochastic integral and differential equations. Simulation methods are given throughout the text as well as numerous exercises.

Product Details :

Genre : Mathematics
Author : Nicolas Bouleau
Publisher : John Wiley & Sons
Release : 1994-01-14
File : 402 Pages
ISBN-13 : 0471546410


Stochastic Simulation And Monte Carlo Methods

eBook Download

BOOK EXCERPT:

In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.

Product Details :

Genre : Mathematics
Author : Carl Graham
Publisher : Springer Science & Business Media
Release : 2013-07-16
File : 264 Pages
ISBN-13 : 9783642393631


Stochastic Processes With Applications To Finance

eBook Download

BOOK EXCERPT:

In recent years, modeling financial uncertainty using stochastic processes has become increasingly important, but it is commonly perceived as requiring a deep mathematical background. Stochastic Processes with Applications to Finance shows that this is not necessarily so. It presents the theory of discrete stochastic processes and their applications in finance in an accessible treatment that strikes a balance between the abstract and the practical. Using an approach that views sophisticated stochastic calculus as based on a simple class of discrete processes-"random walks"-the author first provides an elementary introduction to the relevant areas of real analysis and probability. He then uses random walks to explain the change of measure formula, the reflection principle, and the Kolmogorov backward equation. The Black-Scholes formula is derived as a limit of binomial model, and applications to the pricing of derivative securities are presented. Another primary focus of the book is the pricing of corporate bonds and credit derivatives, which the author explains in terms of discrete default models. By presenting important results in discrete processes and showing how to transfer those results to their continuous counterparts, Stochastic Processes with Applications to Finance imparts an intuitive and practical understanding of the subject. This unique treatment is ideal both as a text for a graduate-level class and as a reference for researchers and practitioners in financial engineering, operations research, and mathematical and statistical finance.

Product Details :

Genre : Mathematics
Author : Masaaki Kijima
Publisher : CRC Press
Release : 2002-07-29
File : 290 Pages
ISBN-13 : 1584882247


Numerical Methods For Stochastic Partial Differential Equations With White Noise

eBook Download

BOOK EXCERPT:

This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.

Product Details :

Genre : Mathematics
Author : Zhongqiang Zhang
Publisher : Springer
Release : 2017-09-01
File : 391 Pages
ISBN-13 : 9783319575117


Monte Carlo Methods

eBook Download

BOOK EXCERPT:

This introduction to Monte Carlo methods seeks to identify and study the unifying elements that underlie their effective application. Initial chapters provide a short treatment of the probability and statistics needed as background, enabling those without experience in Monte Carlo techniques to apply these ideas to their research. The book focuses on two basic themes: The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modeling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on this example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrodinger equation by random walks. The text includes sample problems that readers can solve by themselves to illustrate the content of each chapter. This is the second, completely revised and extended edition of the successful monograph, which brings the treatment up to date and incorporates the many advances in Monte Carlo techniques and their applications, while retaining the original elementary but general approach.

Product Details :

Genre : Science
Author : Malvin H. Kalos
Publisher : John Wiley & Sons
Release : 2008-10-20
File : 217 Pages
ISBN-13 : 9783527407606


Simulation Of Stochastic Processes With Given Accuracy And Reliability

eBook Download

BOOK EXCERPT:

Simulation has now become an integral part of research and development across many fields of study. Despite the large amounts of literature in the field of simulation and modeling, one recurring problem is the issue of accuracy and confidence level of constructed models. By outlining the new approaches and modern methods of simulation of stochastic processes, this book provides methods and tools in measuring accuracy and reliability in functional spaces. The authors explore analysis of the theory of Sub-Gaussian (including Gaussian one) and Square Gaussian random variables and processes and Cox processes. Methods of simulation of stochastic processes and fields with given accuracy and reliability in some Banach spaces are also considered. - Provides an analysis of the theory of Sub-Gaussian (including Gaussian one) and Square Gaussian random variables and processes - Contains information on the study of the issue of accuracy and confidence level of constructed models not found in other books on the topic - Provides methods and tools in measuring accuracy and reliability in functional spaces

Product Details :

Genre : Mathematics
Author : Yuriy V. Kozachenko
Publisher : Elsevier
Release : 2016-11-22
File : 348 Pages
ISBN-13 : 9780081020852


Stochastic Processes

eBook Download

BOOK EXCERPT:

The aim of this special issue is to publish original research papers that cover recent advances in the theory and application of stochastic processes. There is especial focus on applications of stochastic processes as models of dynamic phenomena in various research areas, such as queuing theory, physics, biology, economics, medicine, reliability theory, and financial mathematics. Potential topics include, but are not limited to: Markov chains and processes; large deviations and limit theorems; random motions; stochastic biological model; reliability, availability, maintenance, inspection; queueing models; queueing network models; computational methods for stochastic models; applications to risk theory, insurance and mathematical finance.

Product Details :

Genre : Mathematics
Author : Alexander Zeifman
Publisher : MDPI
Release : 2019-12-12
File : 216 Pages
ISBN-13 : 9783039219629


Simulation And The Monte Carlo Method

eBook Download

BOOK EXCERPT:

This book provides the first simultaneous coverage of the statistical aspects of simulation and Monte Carlo methods, their commonalities and their differences for the solution of a wide spectrum of engineering and scientific problems. It contains standard material usually considered in Monte Carlo simulation as well as new material such as variance reduction techniques, regenerative simulation, and Monte Carlo optimization.

Product Details :

Genre : Mathematics
Author : Reuven Y. Rubinstein
Publisher : John Wiley & Sons
Release : 2009-09-25
File : 308 Pages
ISBN-13 : 9780470317228


Marginal And Functional Quantization Of Stochastic Processes

eBook Download

BOOK EXCERPT:

Vector Quantization, a pioneering discretization method based on nearest neighbor search, emerged in the 1950s primarily in signal processing, electrical engineering, and information theory. Later in the 1960s, it evolved into an automatic classification technique for generating prototypes of extensive datasets. In modern terms, it can be recognized as a seminal contribution to unsupervised learning through the k-means clustering algorithm in data science. In contrast, Functional Quantization, a more recent area of study dating back to the early 2000s, focuses on the quantization of continuous-time stochastic processes viewed as random vectors in Banach function spaces. This book distinguishes itself by delving into the quantization of random vectors with values in a Banach space—a unique feature of its content. Its main objectives are twofold: first, to offer a comprehensive and cohesive overview of the latest developments as well as several new results in optimal quantization theory, spanning both finite and infinite dimensions, building upon the advancements detailed in Graf and Luschgy's Lecture Notes volume. Secondly, it serves to demonstrate how optimal quantization can be employed as a space discretization method within probability theory and numerical probability, particularly in fields like quantitative finance. The main applications to numerical probability are the controlled approximation of regular and conditional expectations by quantization-based cubature formulas, with applications to time-space discretization of Markov processes, typically Brownian diffusions, by quantization trees. While primarily catering to mathematicians specializing in probability theory and numerical probability, this monograph also holds relevance for data scientists, electrical engineers involved in data transmission, and professionals in economics and logistics who are intrigued by optimal allocation problems.

Product Details :

Genre : Mathematics
Author : Harald Luschgy
Publisher : Springer Nature
Release : 2023-12-06
File : 918 Pages
ISBN-13 : 9783031454646