eBook Download
BOOK EXCERPT:
Ferroelectric materials are known and valued for their multifunctionality arising from the possibility to perturb the remnant ferroelectric polarization by electric field, temperature and/or mechanical stimuli. While inorganic ferroelectrics dominate the current market, their organic counterparts may provide highly desired properties like eco-friendliness, easy processability and flexibility, concomitantly opening unique opportunities to combine multiple functionalities into a single compound that facilitates unprecedented device concepts and designs. Supramolecular organic ferroelectrics of columnar discotic type, that are the topic of this thesis, offer additional advantages related to their strong hierarchical self-assembly and easy tunability by molecular structure modifications, allowing optimization of ferroelectric characteristics and their hybridization with, e.g., semiconductivity. This not only leads to textbook ferroelectric materials that can be used as model systems to understand the general behaviour of ferroics, but also gives rise to previously unobserved effects stemming from the interplay of different functionalities. The core-shell structure of the molecules under the scope enables multiple pathways forrational design by molecular structure modification. This was firstly pursued via peripheral tail engineering on an archetypal self-assembling ferroelectric trialkylbenzene-1,3,5-tricarboxamide (BTA). We found that by shortening the alkyl chain length all the ferroelectric properties can be continuously tuned. In particular, changing the tail from C18H37 to C6H13causes an increase in depolarization activation energy (~0.8 eV to ~1.55 eV), coercive field(~25 V/?m to ~50 V/?m) and remnant polarization (~20 mC/m2 to ~60 mC/m2). The combination of the mentioned characteristics resulted in a record polarization retention time of close to 3 months at room temperature for capacitor devices of the material having the shortest alkyl chain – BTA-C6, which at the time of writing was one of the best results for liquid-crystalline ferroelectrics. Taking one step further, we experimentally demonstrated how introduction of branched-tailsubstituents results in materials with a wide operating temperature range and a data retention time of more than 10 years in thin-film solution-processed capacitor devices already atelevated temperatures with no measurable depolarization at room temperature. The observed differences between linear- and branched-tail compounds were analysed using density functional theory (DFT) and molecular dynamics (MD) simulations. We concluded that morphological factors like improved packing quality and reduced disorder, rather than electrostatic interactions or intra/inter-columnar steric hindrance, underlay the superior properties of the branched-tailed BTAs. Synergistic effects upon blending of compounds with branched and linear sidechains were shown to further improve the materials’ characteristics. Exploiting the excellent ferroelectric performance and the well-defined nanostructure of BTAs, we experimentally determined the Preisach (hysteron) distribution of BTA and confronted it to the one obtained for the semi-crystalline P(VDF:TrFE). This allowed to elucidate how the broadening of the Preisach distribution relates to the materials’ morphology. We further connected the experimental Preisach distribution to the corresponding microscopic switching kinetics. We argue that the combination of the two underlays the macroscopic dispersive switching kinetics as commonly observed for practical ferroelectrics. These insights lead to guidelines for further advancement of ferroelectric materials both for conventional and multi-bit data storage applications. Although having strong differences in the Preisach distribution, BTA and P(VDF:TrFE) both demonstrate negative piezoelectricity – a rare anomalous phenomenon which is characteristic to two-phased materials and has never been observed in small-molecular ferroelectrics. We measured a pronounced negative piezoelectric effect in a whole family of BTAs and revealed its tunability by mesogenic tail substitution and structural disorder. While the large- and small-signal strain in highly ordered thin-film BTA capacitor devices are dominated by intrinsic contributions and originates from piezostriction, rising disorder introduces additional extrinsic factors that boost the large-signal d33 up to ?20 pm/V in short-tailed molecules. Interestingly, homologues with longer mesogenic tails show a large-signal electromechanical response that is dominated by the quadratic Maxwell strain with significant mechanical softening upon polarization switching, whereas the small-signal strain remains piezostrictive. Molecular dynamics and DFT calculations both predict a positive d33 for defect-free BTA stacks. Hence, the measured negative macroscopic d33 is attributed to the presence of structural defects that enable the dimensional effect to dominate the piezoelectric response of BTA thin films. The true multifunctionality of supramolecular discotics manifests when large semiconducting cores surrounded by field-switchable strongly polar moieties are introduced in the structure. We showed how the combination of switchable dipolar side groups and the semiconducting core of the newly synthetized C3-symmetric benzotristhiophene molecule (BTTTA) leads to an ordered columnar material showing continuous tunability from injection- to bulk-limited conductivity modulation. Both these resistive switching mechanisms may lead to the next-generation high-density non-volatile rewritable memory devices with high on/off ratios and non-destructive data readout – the element that has been desperately sought after to enablefully organic flexible electronics. Utbredd elektronisering och det högst aktuella fenomenet sakernas internet (Internet of Things) ställer höga krav på nästa generations elektroniska system. Produkterna ska vara lätta att framställa med miljövänliga metoder, låg kostnadsproduktion och skalbarhet (t. ex. tryckt elektronik), återvinningsbarhet eller biologisk nedbrytbarhet (gällande engångselektronik), mekanisk flexibilitet (formbara bärbara system), kemisk stabilitet, till och med biokompatibilitet (t. ex. implanterbara system) – dessa är bara några utmaningar som den kommande tekniken behöver övervinna. Organiska material kan åstadkomma alla dessa önskade egenskaper, samtidigt som man skapar unika möjligheter att kombinera flera funktionaliteter till en enda sammansättning som underlättar nydanande komponenter och design. Ferroelektriska material kännetecknas av pyroelektriska, piezoelektriska och dielektriska egenskaper. Denna mångsidighet möjliggör icke-flyktiga minnesenheter, temperatur- och taktila sensorer, olika transduktorer och manöverdon, som alla baseras på förändringar av den ferroelektriska restpolarisationen genom fält-, temperatur- och / eller mekaniska stimuleringar. Diskformade supramolekylära organiska ferroelektriska ämnen ger ytterligare fördelar tack vare deras modifierbara molekylstrukturer och starka hierarkiska självorganisation som staplar diskarna i kolumner. På detta sätt kan lättbearbetningsbara organiska ferroelektriska material med hög restpolarisering och extrem datalagring konstrueras molekylärt. På grund av deras väldefinierade nanostrukturer kan sådana material användas som modellsystem för att förstå det allmänna beteendet hos polykristallina ferroelektriska material. De uppvisar också ensällsynt negativ piezoelektricitet som är atypisk för små molekylära material och härrör från deras komplexa nanostruktur. Den verkliga multifunktionaliteten hos diskformade supramolekylära ämnen framträder när stora halvledande kärnor omgivna av starkt polära delar, som är växlingsbara via ett elektriskt fält, introduceras i strukturen. Oöverträffad resistiv omkoppling, inducerad av den asymmetriska laddningstransporten beroende på polarisationsriktningen med rekordhög datalagringstid, upptäcktes efter optimering av molekylstrukturen. Även en konceptuellt enklare resistiv omkopplingsmekanism bunden till en modulation av laddningsinjektionsbarriären genom gränssnittsdipolerna observerades. Båda dessa fenomen kan bidra till nästa generations icke-flyktiga överskrivningsbara minnesenheter med högdensitet, stora på av-förhållanden, och icke-destruktiv dataavläsning – vilket är kritiskt för att möjliggöra helt organisk flexibel elektronik.
Product Details :
Genre | : |
Author | : Indre Urbanaviciute |
Publisher | : Linköping University Electronic Press |
Release | : 2019-10-24 |
File | : 121 Pages |
ISBN-13 | : 9789179299736 |