Multiscale Modeling In Continuum Mechanics And Structured Deformations

eBook Download

BOOK EXCERPT:

An updated account of the state of the art in the subject, presenting recent progress in two active and related areas of continuum mechanics: fracture mechanics and structured deformations.

Product Details :

Genre : Science
Author : Gianpetro Del Piero
Publisher : Springer
Release : 2014-05-04
File : 278 Pages
ISBN-13 : 9783709127704


Multiscale Modeling In Solid Mechanics

eBook Download

BOOK EXCERPT:

This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.

Product Details :

Genre : Science
Author : Ugo Galvanetto
Publisher : Imperial College Press
Release : 2010
File : 349 Pages
ISBN-13 : 9781848163089


Multiscale Analysis Of Deformation And Failure Of Materials

eBook Download

BOOK EXCERPT:

Presenting cutting-edge research and development within multiscale modeling techniques and frameworks, Multiscale Analysis of Deformation and Failure of Materials systematically describes the background, principles and methods within this exciting new & interdisciplinary field. The author’s approach emphasizes the principles and methods of atomistic simulation and its transition to the nano and sub-micron scale of a continuum, which is technically important for nanotechnology and biotechnology. He also pays close attention to multiscale analysis across the micro/meso/macroscopy of a continuum, which has a broad scope of applications encompassing different disciplines and practices, and is an essential extension of mesomechanics. Of equal interest to engineers, scientists, academics and students, Multiscale Analysis of Deformation and Failure of Materials is a multidisciplinary text relevant to those working in the areas of materials science, solid and computational mechanics, bioengineering and biomaterials, and aerospace, automotive, civil, and environmental engineering. Provides a deep understanding of multiscale analysis and its implementation Shows in detail how multiscale models can be developed from practical problems and how to use the multiscale methods and software to carry out simulations Discusses two interlinked categories of multiscale analysis; analysis spanning from the atomistic to the micro-continuum scales, and analysis across the micro/meso/macro scale of continuum.

Product Details :

Genre : Technology & Engineering
Author : Jinghong Fan
Publisher : John Wiley & Sons
Release : 2011-06-28
File : 510 Pages
ISBN-13 : 9781119956488


Computational Multiscale Modeling Of Fluids And Solids

eBook Download

BOOK EXCERPT:

The expanded 3rd edition of this established textbook offers an updated overview and review of the computational physics techniques used in materials modelling over different length and time scales. It describes in detail the theory and application of some of the most important methods used to simulate materials across the various levels of spatial and temporal resolution. Quantum mechanical methods such as the Hartree-Fock approximation for solving the Schrödinger equation at the smallest spatial resolution are discussed as well as the Molecular Dynamics and Monte-Carlo methods on the micro- and meso-scale up to macroscopic methods used predominantly in the Engineering world such as Finite Elements (FE) or Smoothed Particle Hydrodynamics (SPH). Extensively updated throughout, this new edition includes additional sections on polymer theory, statistical physics and continuum theory, the latter being the basis of FE methods and SPH. Each chapter now first provides an overview of the key topics covered, with a new “key points” section at the end. The book is aimed at beginning or advanced graduate students who want to enter the field of computational science on multi-scales. It provides an in-depth overview of the basic physical, mathematical and numerical principles for modelling solids and fluids on the micro-, meso-, and macro-scale. With a set of exercises, selected solutions and several case studies, it is a suitable book for students in physics, engineering, and materials science, and a practical reference resource for those already using materials modelling and computational methods in their research.

Product Details :

Genre : Science
Author : Martin Oliver Steinhauser
Publisher : Springer Nature
Release : 2022-07-28
File : 450 Pages
ISBN-13 : 9783030989545


Multi Scale Continuum Mechanics Modelling Of Fibre Reinforced Polymer Composites

eBook Download

BOOK EXCERPT:

Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:

Product Details :

Genre : Technology & Engineering
Author : Wim Van Paepegem
Publisher : Woodhead Publishing
Release : 2020-11-25
File : 766 Pages
ISBN-13 : 9780128189856


Multiscale Modeling And Uncertainty Quantification Of Materials And Structures

eBook Download

BOOK EXCERPT:

This book contains the proceedings of the IUTAM Symposium on Multiscale Modeling and Uncertainty Quantification of Materials and Structures that was held at Santorini, Greece, September 9 – 11, 2013. It consists of 20 chapters which are divided in five thematic topics: Damage and fracture, homogenization, inverse problems–identification, multiscale stochastic mechanics and stochastic dynamics. Over the last few years, the intense research activity at micro scale and nano scale reflected the need to account for disparate levels of uncertainty from various sources and across scales. As even over-refined deterministic approaches are not able to account for this issue, an efficient blending of stochastic and multiscale methodologies is required to provide a rational framework for the analysis and design of materials and structures. The purpose of this IUTAM Symposium was to promote achievements in uncertainty quantification combined with multiscale modeling and to encourage research and development in this growing field with the aim of improving the safety and reliability of engineered materials and structures. Special emphasis was placed on multiscale material modeling and simulation as well as on the multiscale analysis and uncertainty quantification of fracture mechanics of heterogeneous media. The homogenization of two-phase random media was also thoroughly examined in several presentations. Various topics of multiscale stochastic mechanics, such as identification of material models, scale coupling, modeling of random microstructures, analysis of CNT-reinforced composites and stochastic finite elements, have been analyzed and discussed. A large number of papers were finally devoted to innovative methods in stochastic dynamics.

Product Details :

Genre : Science
Author : Manolis Papadrakakis
Publisher : Springer
Release : 2014-07-02
File : 303 Pages
ISBN-13 : 9783319063317


Archives Of Mechanics

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Mechanics, Applied
Author :
Publisher :
Release : 2002
File : 796 Pages
ISBN-13 : CORNELL:31924083094817


Acting Principles Of Nano Scaled Matrix Additives For Composite Structures

eBook Download

BOOK EXCERPT:

The book explores the effect of nanoscale matrix additives along the four levels of material formation, particle-resin interaction, the influence of nanoparticles on the processability of the polymer, the influence of nanoparticles on polymer curing and the influence of nanoparticles on the fiber plastic composite. Fiber-reinforced plastics have a significantly higher lightweight construction potential in components with a primary single- or biaxial stress state compared to isotropic metals. At the same time, their insensitivity to corrosion and their advantageous fatigue properties can help to reduce maintenance costs. Due to their outstanding specific mechanical properties, they are among today's high-performance lightweight construction materials. These properties make them particularly attractive in the field of mobility. However, as soon as the matrix properties dominate the mechanical properties, e.g. in the case of fibre-parallel compressive strength, significant weaknesses become apparent in the mechanical properties. Here, one approach is to significantly increase the matrix properties through nanoscale ceramic additives and at the same time to guarantee the processability of the resin.

Product Details :

Genre : Technology & Engineering
Author : Michael Sinapius
Publisher : Springer Nature
Release : 2021-05-22
File : 479 Pages
ISBN-13 : 9783030685232


Deformation Based Processing Of Materials

eBook Download

BOOK EXCERPT:

Deformation Based Processing of Materials: Behavior, Performance, Modeling and Control focuses on deformation based process behaviors and process performance in terms of the quality of the needed shape, geometries, and the requested properties of the deformed products. In addition, modelling and simulation is covered to create an in-depth and epistemological understanding of the process. Other topics discussed include ways to efficiently reduce or avoid defects and effectively improve the quality of deformed parts. The book is ideal as a technical document, but also serves as scientific literature for engineers, scientists, academics, research students and management professionals involved in deformation based materials processing. - Covers process behaviors, such as non-uniform deformation, unstable deformation, material flow phenomena, and process performance - Includes modelling and simulation of the entire deformation process - Looks at control of the preferred deformation, undesirable material flow, avoidance and reduction of defects, and improving the dimensional accuracy, surface quality and microstructure construction of the produced products

Product Details :

Genre : Technology & Engineering
Author : Heng Li
Publisher : Elsevier
Release : 2019-03-07
File : 352 Pages
ISBN-13 : 9780128143827


Structural Geology

eBook Download

BOOK EXCERPT:

Structural Geology is a groundbreaking reference that introduces you to the concepts of nonlinear solid mechanics and non-equilibrium thermodynamics in metamorphic geology, offering a fresh perspective on rock structure and its potential for new interpretations of geological evolution. This book stands alone in unifying deformation and metamorphism and the development of the mineralogical fabrics and the structures that we see in the field. This reflects the thermodynamics of systems not at equilibrium within the framework of modern nonlinear solid mechanics. The thermodynamic approach enables the various mechanical, thermal, hydrological and chemical processes to be rigorously coupled through the second law of thermodynamics, invariably leading to nonlinear behavior. The book also differs from others in emphasizing the implications of this nonlinear behavior with respect to the development of the diverse, complex, even fractal, range of structures in deformed metamorphic rocks. Building on the fundamentals of structural geology by discussing the nonlinear processes that operate during the deformation and metamorphism of rocks in the Earth's crust, the book's concepts help geoscientists and graduate-level students understand how these processes control or influence the structures and metamorphic fabrics—providing applications in hydrocarbon exploration, ore mineral exploration, and architectural engineering. - Authored by two of the world's foremost experts in structural geology, representing more than 70 years of experience in research and instruction - Nearly 300 figures, illustrations, working examples, and photographs reinforce key concepts and underscore major advances in structural geology

Product Details :

Genre : Science
Author : Bruce E. Hobbs
Publisher : Elsevier
Release : 2014-11-21
File : 681 Pages
ISBN-13 : 9780124079335