Nanocarbon Inorganic Hybrids For Photocatalytic Water Splitting H 2 Production

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Alexey S. Cherevan
Publisher :
Release : 2014
File : 217 Pages
ISBN-13 : OCLC:905364862


Nanocarbon Inorganic Hybrids

eBook Download

BOOK EXCERPT:

Nanocarbon-Inorganic Hybrids is dedicated exclusively to the new family of functional materials, covering a multidisciplinary research field that combines materials science, chemistry and physics with nanotechnology and applied energy science. It provides a concise introduction into fundamental principles of nanocarbons, defines hybrids and composites, explains the physics behind sustainability, and illustrates requirements for successful implementation in energy applications. It further reviews the current research on developing concepts for designing nanocarbon hybrids, unravels mechanistic details of interfacial electron transfer processes and highlights future challenges and perspectives associated with exploiting these exciting new materials in commercial energy applications and beyond. This comprehensively written book is indispensable for Master and PhD students seeking to become familiar with a modern fi eld of knowledge-driven material science as well as for senior researchers and industrial staff scientists who explore the frontiers of knowledge.

Product Details :

Genre : Technology & Engineering
Author : Dominik Eder
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2014-08-20
File : 556 Pages
ISBN-13 : 9783110269864


Multifunctional Photocatalytic Materials For Energy

eBook Download

BOOK EXCERPT:

Multifunctional Photocatalytic Materials for Energy discusses recent developments in multifunctional photocatalytic materials, such as semiconductors, quantum dots, carbon nanotubes and graphene, with an emphasis on their novel properties and synthesis strategies and discussions of their fundamental principles and applicational achievements in energy fields, for example, hydrogen generation from water splitting, CO2 reduction to hydrocarbon fuels, degradation of organic pollutions and solar cells. This book serves as a valuable reference book for researchers, but is also an instructive text for undergraduate and postgraduate students who want to learn about multifunctional photocatalytic materials to stimulate their interests in designing and creating advanced materials. - Covers all aspects of recent developments in multifunctional photocatalytic materials - Provides fundamental understanding of the structure, properties and energy applications of these materials - Contains contributions from leading international experts in the field working in multidisciplinary subject areas - Focuses on advanced applications and future research advancements, such as graphene-based nanomaterials and multi-hybrid nanocomposites - Presents a valuable reference for researchers and students that stimulates interest in designing advanced materials for renewable energy resources

Product Details :

Genre : Technology & Engineering
Author : Zhiqun Lin
Publisher : Woodhead Publishing
Release : 2018-03-19
File : 346 Pages
ISBN-13 : 9780081019788


Development Of Inorganic Nanomaterials As Photocatalysts For The Water Splitting Reaction

eBook Download

BOOK EXCERPT:

The photochemical water splitting reaction is of great interest for converting solar energy into usable fuels. This dissertation focuses on the development of inorganic nanoparticle catalysts for solar energy driven conversion of water into hydrogen and oxygen. The results from these selected studies have allowed greater insight into nanoparticle chemistry and the role of nanoparticles in photochemical conversion of water in to hydrogen and oxygen. Chapter 2 shows that CdSe nanoribbons have photocatalytic activity for hydrogen production from water in the presence of Na2S/Na2SO3 as sacrificial electron donors in both UV and visible light. Quantum confinement of this material leads to an extended bandgap of 2.7 eV and enables the photocatalytic activity of this material. We report on the photocatalytic H2 evolution, and its dependence on platinum co-catalysts, the concentration of the electron donor, and the wavelength of incident radiation. Transient absorption measurements reveal decay of the excited state on multiple timescales, and an increase of lifetimes of trapped electrons due to the sacrificial electron donors. In chapter 3, we explore the catalytic activity of citrate-capped CdSe quantum dots. We show that the process is indeed catalytic for these dots in aqueous 0.1 M Na2S:Na2SO3, but not in pure water. Furthermore, optical spectroscopy was used to report electronic transitions in the dots and electron microscopy was used to obtain morphology of the catalyst. Interestingly, an increasing catalytic rate is noted for undialyzed catalyst. Dynamic light scattering experiments show an increased hydrodynamic radius in the case of undialyzed CdSe dots in donor solution. In chapter 4 we show that CdSe:MoS2 nanoparticle composites with improved catalytic activity can be assembled from CdSe and MoS2 nanoparticle building units. We report on the photocatalytic H2 evolution, quantum efficiency using LED irriadiation, and its dependence on the co-catalyst loading. Furthermore, optical spectroscopy, cyclic voltammetry, and electron microscopy were used to obtain morphology, optical properties, and electronic structure of the catalysts. In chapter 5, illumination with visible light ([lambda]> 400 nm) photoconverts a red V2O5 gel in aqueous methanol solution into a green VO2 gel. The presence of V(4+) in the green VO2 gel is supported by Electron Energy Loss Spectra. High-resolution electron micrographs, powder X-ray diffraction, and selective area electron diffraction (SAED) data show that the crystalline structure of the V2O5 gel is retained upon reduction. After attachment of colloidal Pt nanoparticles, H2 evolution proceeds catalytically on the VO2 gel. The Pt nanoparticles reduce the H2 evolution overpotential. However, the activity of the new photocatalyst remains limited by the VO2 conduction band edge just below the proton reduction potential. Chapter 6 studies the ability of IrO2 to evolve oxygen from aqueous solutions under UV irradiation. We show that visible illumination ([lambda]> 400 nm) of iridium dioxide (IrO2) nanocrystals capped in succinic acid in aqueous sodium persulfate solution leads to catalytic oxygen evolution. While the majority of catalytic hydrogen evolution comes from UV light, the process can still be driven with visible light. Morphology, optical properties, surface photovoltage measurements, and oxygen evolution rates are discussed.

Product Details :

Genre :
Author : Fredrick Andrew Frame
Publisher :
Release : 2010
File : Pages
ISBN-13 : 1124508597


Nanocarbon And Its Composites

eBook Download

BOOK EXCERPT:

Nanocarbon and Its Composites: Preparation, Properties and Applications provides a detailed and comprehensive review of all major innovations in the field of nanocarbons and their composites, including preparation, properties and applications. Coverage is broad and quite extensive, encouraging future research in carbon-based materials, which are in high demand due to the need to develop more sustainable, recyclable and eco-friendly methods for materials. Chapters are written by eminent scholars and leading experts from around the globe who discuss the properties and applications of carbon-based materials, such as nanotubes (buckytubes), fullerenes, cones, horns, rods, foams, nanodiamonds and carbon black, and much more. Chapters provide cutting-edge, up-to-date research findings on the use of carbon-based materials in different application fields and illustrate how to achieve significant enhancements in physical, chemical, mechanical and thermal properties. - Demonstrates systematic approaches and investigations from design, synthesis, characterization and applications of nanocarbon based composites - Aims to compile information on the various aspects of synthesis, properties and applications of nano-carbon based materials - Presents a useful reference and technical guide for university academics and postgraduate students (Masters and Ph.D.)

Product Details :

Genre : Technology & Engineering
Author : Anish Khan
Publisher : Woodhead Publishing
Release : 2018-11-30
File : 874 Pages
ISBN-13 : 9780081025109


Carbon Nanomaterials For Electrochemical Energy Technologies

eBook Download

BOOK EXCERPT:

This book offers comprehensive coverage of carbon-based nanomaterials and electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, and hydrogen generation and storage, as well as the latest material and new technology development. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, degradation mechanisms, challenges, and strategies. With in-depth discussions ranging from electrochemistry fundamentals to engineering components and applied devices, this all-inclusive reference offers a broad view of various carbon nanomaterials and technologies for electrochemical energy conversion and storage devices.

Product Details :

Genre : Science
Author : Shuhui Sun
Publisher : CRC Press
Release : 2017-11-20
File : 329 Pages
ISBN-13 : 9781498746144


Heterogeneous Photocatalysis

eBook Download

BOOK EXCERPT:

The book explains the principles and fundamentals of photocatalysis and highlights the current developments and future potential of the green-chemistry-oriented applications of various inorganic, organic, and hybrid photocatalysts. The book consists of eleven chapters, including the principles and fundamentals of heterogeneous photocatalysis; the mechanisms and dynamics of surface photocatalysis; research on TiO2-based composites with unique nanostructures; the latest developments and advances in exploiting photocatalyst alternatives to TiO2; and photocatalytic materials for applications other than the traditional degradation of pollutants, such as carbon dioxide reduction, water oxidation, a complete spectrum of selective organic transformations and water splitting by photocatalytic reduction. In addition, heterogeneized polyoxometalate materials for photocatalytic purposes and the proper design of photocatalytic reactors and modeling of light are also discussed. This book appeals to a wide readership of the academic and industrial researchers and it can also be used in the classroom for undergraduate and graduate students focusing on heterogeneous photocatalysis, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors, and surface and interface science. Juan Carlos Colmenares is a Professor at the Institute of Physical Chemistry, Polish Academy of Sciences, Poland. Yi-Jun Xu is a Professor at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China.

Product Details :

Genre : Science
Author : Juan Carlos Colmenares
Publisher : Springer
Release : 2015-12-24
File : 419 Pages
ISBN-13 : 9783662487198


Electrocatalytic Materials

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Santanu Patra
Publisher : Springer Nature
Release :
File : 631 Pages
ISBN-13 : 9783031659027


Photochemical Water Splitting

eBook Download

BOOK EXCERPT:

Cleavage of water to its constituents (i.e., hydrogen and oxygen) for production of hydrogen energy at an industrial scale is one of the "holy grails" of materials science. That can be done by utilizing the renewable energy resource i.e. sunlight and photocatalytic material. The sunlight and water are abundant and free of cost available at this planet. But the development of a stable, efficient and cost-effective photocatalytic material to split water is still a great challenge. To develop the effective materials for photocatalytic water splitting, various type of materials with different sizes and structures from nano to giant have been explored that includes metal oxides, metal chalcogenides, carbides, nitrides, phosphides, and so on. Fundamental concepts and state of art materials for the water splitting are also discussed to understand the phenomenon/mechanism behind the photoelectrochemical water splitting. This book gives a comprehensive overview and description of the manufacturing of photocatalytic materials and devices for water splitting by controlling the chemical composition, particle size, morphology, orientation and aspect ratios of the materials. The real technological breakthroughs in the development of the photoactive materials with considerable efficiency, are well conversed to bring out the practical aspects of the technique and its commercialization.

Product Details :

Genre : Science
Author : Neelu Chouhan
Publisher : CRC Press
Release : 2017-01-27
File : 310 Pages
ISBN-13 : 9781315279633


Nanomaterials For Sustainable Hydrogen Production And Storage

eBook Download

BOOK EXCERPT:

Hydrogen is poised to play a major role in the transition towards a net-zero economy. However, the worldwide implementation of hydrogen energy is restricted by several challenges, including those related to practical, easy, safe, and cost-effective storage and production methodologies. Nanomaterials present a promising solution, playing an integral role in overcoming the limitations of hydrogen production and storage. This book explores these innovations, covering a wide spectrum of applications of nanomaterials for sustainable hydrogen production and storage. Provides an overview of the hydrogen economy and its role in the transition to a net-zero economy. Details various nanomaterials for hydrogen production and storage as well as modeling and optimization of nanomaterials production. Features real-life case studies on innovations in nanomaterials applications for hydrogen storage. Discusses both the current status and future prospects. Aimed at researchers and professionals in chemical, materials, energy, environmental and related engineering disciplines, this work provides readers with an overview of the latest techniques and materials for the development and advancement of hydrogen energy technologies.

Product Details :

Genre : Science
Author : Jude A. Okolie
Publisher : CRC Press
Release : 2024-04-25
File : 200 Pages
ISBN-13 : 9781040015087