eBook Download
BOOK EXCERPT:
The gradual increase of population and the consequential rise in the energy demands in recent years have led to the widespread use of fossil fuels. CO2 transformation by various processes is considered as a promising alternative technology. This book sets out the fundaments of how nanomaterials are being used for this purpose. Nanomaterials for CO2 Capture, Storage, Conversion and Utilization summarizes the research, development and innovations in the capture, storage, transformation and utilization of CO2 into useful products and raw chemicals for industry. This is achieved by using advanced processes such as CO2 reforming, bi-reforming and tri-reforming of hydrocarbons or biomass derivatives; homogeneous and heterogeneous hydrogenation; photochemical reduction; photoelectrochemical reduction; electrochemical reduction; biochemical reduction; supercritical CO2 technology; advanced catalyst synthesis for CO2 conversion; organic carbonates for polymers synthesis from CO2, and CO2 capture and sequestration. The systematic and updated reviews on the mentioned sectors, especially on the use of nanotechnology for the transformation of CO2 is scarce in the literature. Thus, the book addresses the recent knowledge gaps and potential solutions of the storage, utilization and transformation of CO2 as well as its promising applications. This is an important reference source for materials scientists, engineers and energy scientists who want to understand how nanotechnology is helping us to solve some of the world's major energy problems. - Shows how nanomaterials are being used to create more efficient CO2 capture, storage and conversation systems - Outlines the major nanomaterials-based techniques to create such systems - Assesses the major challenges in using nanomaterials for energy capture, storage and conversion
Product Details :
Genre | : Technology & Engineering |
Author | : Phuong Nguyen Tri |
Publisher | : Elsevier |
Release | : 2021-04-10 |
File | : 396 Pages |
ISBN-13 | : 9780128230848 |