Neural Network Modeling And Identification Of Dynamical Systems

eBook Download

BOOK EXCERPT:

Neural Network Modeling and Identification of Dynamical Systems presents a new approach on how to obtain the adaptive neural network models for complex systems that are typically found in real-world applications. The book introduces the theoretical knowledge available for the modeled system into the purely empirical black box model, thereby converting the model to the gray box category. This approach significantly reduces the dimension of the resulting model and the required size of the training set. This book offers solutions for identifying controlled dynamical systems, as well as identifying characteristics of such systems, in particular, the aerodynamic characteristics of aircraft. - Covers both types of dynamic neural networks (black box and gray box) including their structure, synthesis and training - Offers application examples of dynamic neural network technologies, primarily related to aircraft - Provides an overview of recent achievements and future needs in this area

Product Details :

Genre : Science
Author : Yury Tiumentsev
Publisher : Academic Press
Release : 2019-05-17
File : 334 Pages
ISBN-13 : 9780128154304


Neural Networks In Robotics

eBook Download

BOOK EXCERPT:

Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robotics. The goal is to build robots which can emulate the ability of living organisms to integrate perceptual inputs smoothly with motor responses, even in the presence of novel stimuli and changes in the environment. The ability of living systems to learn and to adapt provides the standard against which robotic systems are judged. In order to emulate these abilities, a number of investigators have attempted to create robot controllers which are modelled on known processes in the brain and musculo-skeletal system. Several of these models are described in this book. On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented. For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems.

Product Details :

Genre : Technology & Engineering
Author : George A. Bekey
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 560 Pages
ISBN-13 : 9781461531807


Neural Networks Modeling And Control

eBook Download

BOOK EXCERPT:

Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. - Provide in-depth analysis of neural control models and methodologies - Presents a comprehensive review of common problems in real-life neural network systems - Includes an analysis of potential applications, prototypes and future trends

Product Details :

Genre : Science
Author : Jorge D. Rios
Publisher : Academic Press
Release : 2020-01-15
File : 160 Pages
ISBN-13 : 9780128170793


Neural Network Systems Techniques And Applications

eBook Download

BOOK EXCERPT:

The book emphasizes neural network structures for achieving practical and effective systems, and provides many examples. Practitioners, researchers, and students in industrial, manufacturing, electrical, mechanical,and production engineering will find this volume a unique and comprehensive reference source for diverse application methodologies. Control and Dynamic Systems covers the important topics of highly effective Orthogonal Activation Function Based Neural Network System Architecture, multi-layer recurrent neural networks for synthesizing and implementing real-time linear control,adaptive control of unknown nonlinear dynamical systems, Optimal Tracking Neural Controller techniques, a consideration of unified approximation theory and applications, techniques for the determination of multi-variable nonlinear model structures for dynamic systems with a detailed treatment of relevant system model input determination, High Order Neural Networks and Recurrent High Order Neural Networks, High Order Moment Neural Array Systems, Online Learning Neural Network controllers, and Radial Bias Function techniques. Coverage includes: - Orthogonal Activation Function Based Neural Network System Architecture (OAFNN) - Multilayer recurrent neural networks for synthesizing and implementing real-time linear control - Adaptive control of unknown nonlinear dynamical systems - Optimal Tracking Neural Controller techniques - Consideration of unified approximation theory and applications - Techniques for determining multivariable nonlinear model structures for dynamic systems, with a detailed treatment of relevant system model input determination

Product Details :

Genre : Computers
Author :
Publisher : Academic Press
Release : 1998-02-09
File : 459 Pages
ISBN-13 : 9780080553900


Artificial Intelligence Models For The Dark Universe

eBook Download

BOOK EXCERPT:

The dark universe contains matter and energy unidentifiable with current physical models, accounting for 95% of all the matter and energetic equivalent in the universe. The enormous surplus brings up daunting enigmas, such as the cosmological constant problem and the apparent distortions in the dynamics of deep space, and so coming to grips with the invisible universe has become a scientific imperative. This book addresses this need, reckoning that no cogent physical model of the dark universe can be implemented without first addressing the metaphysical hurdles along the way. The foremost problem is identifying the topology of the universe which, as argued in the book, is highly relevant to unveil the secrets of the dark universe. Artificial Intelligence (AI) is a valuable tool in this effort since it can reconcile conflicting data from deep space with the extant laws of physics by building models to decipher the dark universe. This book explores the applications of AI and how it can be used to embark on a metaphysical quest to identify the topology of the universe as a prerequisite to implement a physical model of the dark sector that enables a meaningful extrapolation into the visibile sector. The book is intended for a broad readership, but a background in college-level physics and computer science is essential. The book will be a valuable guide for graduate students as well as researchers in physics, astrophysics, and computer science focusing on AI applications to elucidate the nature of the dark universe. Key Features: · Provides readers with an intellectual toolbox to understand physical arguments on dark matter and energy. · Up to date with the latest cutting-edge research. · Authored by an expert on artificial intelligence and mathematical physics.

Product Details :

Genre : Science
Author : Ariel Fernández
Publisher : CRC Press
Release : 2024-08-20
File : 240 Pages
ISBN-13 : 9781040100912


Strategies For Feedback Linearisation

eBook Download

BOOK EXCERPT:

Using relevant mathematical proofs and case studies illustrating design and application issues, this book demonstrates this powerful technique in the light of research on neural networks, which allow the identification of nonlinear models without the complicated and costly development of models based on physical laws.

Product Details :

Genre : Technology & Engineering
Author : Freddy Rafael Garces
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 180 Pages
ISBN-13 : 9781447100652


Artificial Higher Order Neural Networks For Computer Science And Engineering Trends For Emerging Applications

eBook Download

BOOK EXCERPT:

"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.

Product Details :

Genre : Computers
Author : Zhang, Ming
Publisher : IGI Global
Release : 2010-02-28
File : 660 Pages
ISBN-13 : 9781615207121


Modelling Simulation And Control Of Non Linear Dynamical Systems

eBook Download

BOOK EXCERPT:

These authors use soft computing techniques and fractal theory in this new approach to mathematical modeling, simulation and control of complexion-linear dynamical systems. First, a new fuzzy-fractal approach to automated mathematical modeling of non-linear dynamical systems is presented. It is illustrated with examples on the PROLOG programming la

Product Details :

Genre : Mathematics
Author : Patricia Melin
Publisher : CRC Press
Release : 2001-10-25
File : 161 Pages
ISBN-13 : 9781000611960


Advances In Neural Computation Machine Learning And Cognitive Research Iii

eBook Download

BOOK EXCERPT:

This book describes new theories and applications of artificial neural networks, with a special focus on answering questions in neuroscience, biology and biophysics and cognitive research. It covers a wide range of methods and technologies, including deep neural networks, large scale neural models, brain computer interface, signal processing methods, as well as models of perception, studies on emotion recognition, self-organization and many more. The book includes both selected and invited papers presented at the XXI International Conference on Neuroinformatics, held on October 7-11, 2019, in Dolgoprudny, a town in Moscow region, Russia.

Product Details :

Genre : Technology & Engineering
Author : Boris Kryzhanovsky
Publisher : Springer Nature
Release : 2019-09-03
File : 434 Pages
ISBN-13 : 9783030304256


Emerging Capabilities And Applications Of Artificial Higher Order Neural Networks

eBook Download

BOOK EXCERPT:

Artificial neural network research is one of the new directions for new generation computers. Current research suggests that open box artificial higher order neural networks (HONNs) play an important role in this new direction. HONNs will challenge traditional artificial neural network products and change the research methodology that people are currently using in control and recognition areas for the control signal generating, pattern recognition, nonlinear recognition, classification, and prediction. Since HONNs are open box models, they can be easily accepted and used by individuals working in information science, information technology, management, economics, and business fields. Emerging Capabilities and Applications of Artificial Higher Order Neural Networks contains innovative research on how to use HONNs in control and recognition areas and explains why HONNs can approximate any nonlinear data to any degree of accuracy, their ease of use, and how they can have better nonlinear data recognition accuracy than SAS nonlinear procedures. Featuring coverage on a broad range of topics such as nonlinear regression, pattern recognition, and data prediction, this book is ideally designed for data analysists, IT specialists, engineers, researchers, academics, students, and professionals working in the fields of economics, business, modeling, simulation, control, recognition, computer science, and engineering research.

Product Details :

Genre : Computers
Author : Zhang, Ming
Publisher : IGI Global
Release : 2021-02-05
File : 540 Pages
ISBN-13 : 9781799835653