eBook Download
BOOK EXCERPT:
Product Details :
Genre | : |
Author | : Clement Boateng Ampadu |
Publisher | : Lulu.com |
Release | : |
File | : 104 Pages |
ISBN-13 | : 9781678166670 |
Download PDF Ebooks Easily, FREE and Latest
WELCOME TO THE LIBRARY!!!
What are you looking for Book "New Classes Of Quantile Generated Distributions Statistical Measures Model Fit And Characterizations" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
Genre | : |
Author | : Clement Boateng Ampadu |
Publisher | : Lulu.com |
Release | : |
File | : 104 Pages |
ISBN-13 | : 9781678166670 |
Statistical distributions are essential tools to model the characteristics of datasets, such as right or left skewness, bi-modality or multi-modality observed in different applied sciences, such as engineering, medicine, and finance. The well-known distributions like normal, Weibull, gamma and Lindley are extensively used because of their simple forms and identifiability properties. In the last decade, researchers have focused on the more complex and flexible distributions, referred to as Generalized or simply G families of probability distributions, to increase the modelling capability of these distributions by adding one or more shape parameters. The main aim of this edited book is to present new contributions by researchers in the field of G families of probability distributions. The book will help researchers to: Develop new univariate continuous and discrete G families of probability distributions. Develop new bivariate continuous and discrete G families of probability distributions. Derive beneficial mathematical properties such as ordinary and incomplete moments, moment generating functions, residual life and reversed residual life functions, order statistics, quantile spread ordering and entropies, and some bivariate and multivariate extensions of the new and existing models using a simple-type copula.
Genre | : Mathematics |
Author | : Mir Masoom Ali |
Publisher | : CRC Press |
Release | : 2023-03-31 |
File | : 365 Pages |
ISBN-13 | : 9781000860351 |
Extreme Value Modeling and Risk Analysis: Methods and Applications presents a broad overview of statistical modeling of extreme events along with the most recent methodologies and various applications. The book brings together background material and advanced topics, eliminating the need to sort through the massive amount of literature on the subje
Genre | : Mathematics |
Author | : Dipak K. Dey |
Publisher | : CRC Press |
Release | : 2016-01-06 |
File | : 538 Pages |
ISBN-13 | : 9781498701310 |
Genre | : Mathematics |
Author | : J.G. Kalbfleisch |
Publisher | : Springer Science & Business Media |
Release | : 2012-12-06 |
File | : 321 Pages |
ISBN-13 | : 9781468400915 |
Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you’ll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You’ll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You’ll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author’s extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer. Table of Contents PART 1 AN INTRODUCTION TO MACHINE LEARNING ENGINEERING 1 What is a machine learning engineer? 2 Your data science could use some engineering 3 Before you model: Planning and scoping a project 4 Before you model: Communication and logistics of projects 5 Experimentation in action: Planning and researching an ML project 6 Experimentation in action: Testing and evaluating a project 7 Experimentation in action: Moving from prototype to MVP 8 Experimentation in action: Finalizing an MVP with MLflow and runtime optimization PART 2 PREPARING FOR PRODUCTION: CREATING MAINTAINABLE ML 9 Modularity for ML: Writing testable and legible code 10 Standards of coding and creating maintainable ML code 11 Model measurement and why it’s so important 12 Holding on to your gains by watching for drift 13 ML development hubris PART 3 DEVELOPING PRODUCTION MACHINE LEARNING CODE 14 Writing production code 15 Quality and acceptance testing 16 Production infrastructure
Genre | : Computers |
Author | : Ben Wilson |
Publisher | : Simon and Schuster |
Release | : 2022-04-26 |
File | : 574 Pages |
ISBN-13 | : 9781617298714 |
A guide to the issues relevant to the design, analysis, and interpretation of toxicity studies that examine chemicals for use in the environment Statistical Analysis of Ecotoxicity Studies offers a guide to the design, analysis, and interpretation of a range of experiments that are used to assess the toxicity of chemicals. While the book highlights ecotoxicity studies, the methods presented are applicable to the broad range of toxicity studies. The text contains myriad datasets (from laboratory and field research) that clearly illustrate the book's topics. The datasets reveal the techniques, pitfalls, and precautions derived from these studies. The text includes information on recently developed methods for the analysis of severity scores and other ordered responses, as well as extensive power studies of competing tests and computer simulation studies of regression models that offer an understanding of the sensitivity (or lack thereof) of various methods and the quality of parameter estimates from regression models. The authors also discuss the regulatory process indicating how test guidelines are developed and review the statistical methodology in current or pending OECD and USEPA ecotoxicity guidelines. This important guide: Offers the information needed for the design and analysis to a wide array of ecotoxicity experiments and to the development of international test guidelines used to assess the toxicity of chemicals Contains a thorough examination of the statistical issues that arise in toxicity studies, especially ecotoxicity Includes an introduction to toxicity experiments and statistical analysis basics Includes programs in R and excel Covers the analysis of continuous and Quantal data, analysis of data as well as Regulatory Issues Presents additional topics (Mesocosm and Microplate experiments, mixtures of chemicals, benchmark dose models, and limit tests) as well as software Written for directors, scientists, regulators, and technicians, Statistical Analysis of Ecotoxicity Studies provides a sound understanding of the technical and practical issues in designing, analyzing, and interpreting toxicity studies to support or challenge chemicals for use in the environment.
Genre | : Science |
Author | : John W. Green |
Publisher | : John Wiley & Sons |
Release | : 2018-07-05 |
File | : 743 Pages |
ISBN-13 | : 9781119488811 |
This applied, self-contained text provides detailed coverage of the practical aspects of multivariate statistical process control (MVSPC)based on the application of Hotelling's T2 statistic. MVSPC is the application of multivariate statistical techniques to improve the quality and productivity of an industrial process. The authors, leading researchers in this area who have developed major software for this type of charting procedure, provide valuable insight into the T2 statistic. Intentionally including only a minimal amount of theory, they lead readers through the construction and monitoring phases of the T2 control statistic using numerous industrial examples taken primarily from the chemical and power industries. These examples are applied to the construction of historical data sets to serve as a point of reference for the control procedure and are also applied to the monitoring phase, where emphasis is placed on signal location and interpretation in terms of the process variables.
Genre | : Technology & Engineering |
Author | : Robert L. Mason |
Publisher | : SIAM |
Release | : 2002-01-01 |
File | : 276 Pages |
ISBN-13 | : 0898718465 |
The papers in Measurement of Poverty, Deprivation, and Social Exclusion represent the most current research on poverty, deprivation, and income mobility. They illustrate the multidimensionality of poverty that is difficult to capture in any one measure. The volume presents state-of-the-art research that is relevant to poverty academics globally.
Genre | : Social Science |
Author | : Thesia I. Garner |
Publisher | : Emerald Group Publishing |
Release | : 2015-09-16 |
File | : 354 Pages |
ISBN-13 | : 9781785603860 |
Mineral resource estimation has changed considerably in the past 25 years: geostatistical techniques have become commonplace and continue to evolve; computational horsepower has revolutionized all facets of numerical modeling; mining and processing operations are often larger; and uncertainty quantification is becoming standard practice. Recent books focus on historical methods or details of geostatistical theory. So there is a growing need to collect and synthesize the practice of modern mineral resource estimation into a book for undergraduate students, beginning graduate students, and young geologists and engineers. It is especially fruitful that this book is written by authors with years of relevant experience performing mineral resource estimation and with years of relevant teaching experience. This comprehensive textbook and reference fills this need.
Genre | : Science |
Author | : Mario E. Rossi |
Publisher | : Springer Science & Business Media |
Release | : 2013-12-21 |
File | : 337 Pages |
ISBN-13 | : 9781402057175 |
This is the User's Manual to the software package EnvironmentalStats for S-PLUS, which is an add-on module for S-PLUS providing the first comprehensive software package for environmental scientists, engineers, and regulators. The new edition provides the documentation for Version 2.0 (which runs under S-PLUS 6.0), and includes extensive examples using real data sets.
Genre | : Science |
Author | : Steven P. Millard |
Publisher | : Springer Science & Business Media |
Release | : 2002-02-08 |
File | : 286 Pages |
ISBN-13 | : 0387953981 |