Next Generation Cubesats And Smallsats

eBook Download

BOOK EXCERPT:

Next Generation of CubeSats and SmallSats: Enabling Technologies, Missions, and Markets provides a comprehensive understanding of the small and medium sized satellite approach and its potentialities and limitations. The book analyzes promising applications (e.g., constellations and distributed systems, small science platforms that overachieve relative to their development time and cost) as paradigm-shifting solutions for space exploitation, with an analysis of market statistics and trends and a prediction of where the technologies, and consequently, the field is heading in the next decade. The book also provides a thorough analysis of CubeSat potentialities and applications, and addresses unique technical approaches and systems strategies. Throughout key sections (introduction and background, technology details, systems, applications, and future prospects), the book provides basic design tools scaled to the small satellite problem, assesses the technological state-of-the-art, and describes the most recent advancements with a look to the near future. This new book is for aerospace engineering professionals, advanced students, and designers seeking a broad view of the CubeSat world with a brief historical background, strategies, applications, mission scenarios, new challenges and upcoming advances. - Presents a comprehensive and systematic view of the technologies and space missions related to nanosats and smallsats - Discusses next generation technologies, up-coming advancements and future perspectives - Features the most relevant CubeSat launch initiatives from NASA, ESA, and from developing countries, along with an overview of the New Space CubeSat market

Product Details :

Genre : Technology & Engineering
Author : Francesco Branz
Publisher : Elsevier
Release : 2023-08-24
File : 838 Pages
ISBN-13 : 9780128245422


Next Generation Cubesats And Smallsats

eBook Download

BOOK EXCERPT:

The small satellite market is growing at a fast pace, bringing about quick changes and exciting transformations of technologies and paradigms. Miniature spacecraft, especially those adhering to the common CubeSat standard, are proving impressive capabilities to effectively tackle the challenges set by modern space exploitation. Tracking the rapid updates of the small satellite field is both challenging and crucial to fully take advantage of the constant innovations. The Next Generation of CubeSats and SmallSats provides a wide and clear understanding of the small-satellite approach, potentialities and current limitations. The book analyzes the most promising applications (e.g. constellations and distributed systems; small science platforms that overachieve relative to their development time and cost) as paradigm-shifting solutions for space exploitation with analysis of market statistics and trends while keeping up with the newest technical developments and predicting where the technologies and, consequently, the field is heading in the next decade. Throughout key sections (introduction and background, technology details, systems, applications, and future prospects), the book provides basic design tools scaled to the small satellite problem, assesses the technological State-of-the-Art, describes the most recent advancements with a look to the near future. The book also provides a thorough analysis of CubeSat potentialities and applications, and addresses unique technical approaches and systems strategies adopted during the development process of small satellites. This new book is for aerospace engineering professionals, advanced students, and designers seeking a broad view of the CubeSat world with a brief historical background, strategies, applications, mission scenarios, new challenges and upcoming advances. Presents a comprehensive and systematic view of the technologies and space missions related to nanosats and smallsats Discusses next generation technologies, up-coming advancements and future perspectives Features the most relevant CubeSat launch initiatives from NASA, ESA and from developing countries as well as an overview of the New Space CubeSat market

Product Details :

Genre : Technology & Engineering
Author : Francesco Branz
Publisher : Elsevier
Release : 2023-03-15
File : 836 Pages
ISBN-13 : 9780128245415


Advances In Passive Microwave Remote Sensing Of Oceans

eBook Download

BOOK EXCERPT:

This new edition introduces the fundamentals of passive microwave remote sensing of oceans, including the physical principles of microwave radiometry, novel observational data, their interpretation, and applications. It not only demonstrates and examines the recent advantages and state of the art of microwave data but also provides guidance for explaining complex ocean studies and advanced applications. All chapters are thoroughly updated with detailed analysis of space‐based microwave missions, and a new chapter on space‐based microwave radiometer experiments has been added. This book discusses the power of microwave remote sensing as an efficient tool for diagnostics of ocean phenomena in research and education. Features New to this Edition: • Includes a new chapter and additional data, images, illustrations, and references. • Uses ocean microwave data, acquired from different platforms, to illustrate different methods of analysis and interpretation. • Updates information on recent and important satellite missions dedicated to microwave remote sensing of oceans. • Offers more detailed analysis of multiband microwave data and images. • Provides examples of microwave data that cover different ocean environmental phenomena and hydro‐physical fields, including global and local ocean features. • Presents additional material on advanced applications, including detection capabilities. This book is intended for postgraduate students and professionals working in fields related to remote sensing, geography, oceanography, civil, environmental, and geotechnical engineering.

Product Details :

Genre : Technology & Engineering
Author : Victor Raizer
Publisher : CRC Press
Release : 2024-09-05
File : 342 Pages
ISBN-13 : 9781040095843


Next Generation High Speed Satellite Interconnect

eBook Download

BOOK EXCERPT:

This book introduces the space community to the novel SpaceFibre protocol, developed under the guidance of the European Space Agency (ESA) as the forthcoming, high speed (Gbps) communication protocol for satellite on-board communication. Since SpaceFibre is expected to follow the success of its predecessor SpaceWire protocol (Mbps), the authors provide a system-level perspective for the end-user willing to adopt this latest technology for future space missions. The authors provide a complete view of the SpaceFibre protocol, together with an analysis of all the necessary hardware and software components to integrate this technology onboard a satellite. The text guides potential system adopters toward understanding the protocol, analyzing strengths, weaknesses and performances. Practical design examples and prototype performance measurements in reference scenarios are also included.

Product Details :

Genre : Technology & Engineering
Author : Pietro Nannipieri
Publisher : Springer Nature
Release : 2021-07-23
File : 183 Pages
ISBN-13 : 9783030770440


Achieving Science With Cubesats

eBook Download

BOOK EXCERPT:

Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.

Product Details :

Genre : Science
Author : National Academies of Sciences, Engineering, and Medicine
Publisher : National Academies Press
Release : 2016-10-06
File : 131 Pages
ISBN-13 : 9780309442664


Cubesat Handbook

eBook Download

BOOK EXCERPT:

CubeSat Handbook: From Mission Design to Operations is the first book solely devoted to the design, manufacturing, and in-orbit operations of CubeSats. Beginning with an historical overview from CubeSat co-inventors Robert Twiggs and Jordi Puig-Suari, the book is divided into 6 parts with contributions from international experts in the area of small satellites and CubeSats. It covers topics such as standard interfaces, on-board & ground software, industry standards in terms of control algorithms and sub-systems, systems engineering, standards for AITV (assembly, integration, testing and validation) activities, and launch regulations. This comprehensive resource provides all the information needed for engineers and developers in industry and academia to successfully design and launch a CubeSat mission. - Provides an overview on all aspects that a CubeSat developer needs to analyze during mission design and its realization - Features practical examples on how to design and deal with possible issues during a CubeSat mission - Covers new developments and technologies, including ThinSats and PocketQubeSats

Product Details :

Genre : Technology & Engineering
Author : Chantal Cappelletti
Publisher : Academic Press
Release : 2020-09-25
File : 500 Pages
ISBN-13 : 9780128178850


Winning Space

eBook Download

BOOK EXCERPT:

When President Donald J. Trump announced the creation of America’s sixth branch of the military, the United States Space Force, many in Washington scoffed. But, U.S. rivals in China, Russia, Iran, and North Korea took notice. Since the end of the Cold War, these American foes have chafed under the full-spectrum dominance that the American superpower has enjoyed globally. They have identified space as a key strategic domain where they can challenge—and possibly defeat—the United States military. And, depriving the U.S. military and/or its economy of access to space during an international crisis could spell doom for the United States in other strategic domains (land, sea, air, and cyberspace). After all, space is critical for America’s vaunted information dominance. Satellites overhead are the backbone of America’s global military. Remove them from orbit and U.S. forces worldwide are rendered deaf, dumb, and blind. What’s more, space is a more than $1 trillion economy just waiting to be developed. Whichever country gets there first will have considerable economic and geopolitical power on Earth. Despite President Trump’s creation of the Space Force, Swamp Dwellers in Washington continue resisting his reforms to U.S. space and technology policy. Winning Space tracks the increasing competition the United States is facing in the technology sector and depicts how the United States has been engaged in a Second Space Race—and how it has been losing. Author Brandon Weichert warns how the United States is at risk for a Pearl Harbor-type event in space. Weichert advocates for the full embrace of Trump’s reforms for America's flailing space policy, while also calling for a minimum $1 trillion investment in advanced research and development here in the United States, to stay ahead of America’s advancing foes. Contrary to what many Americans may think, the United States has been declining in space and the high-technology development sector. Should it lose its dominance in these areas, it will surely lose its superpower status. The next decade presents U.S. policymakers one last chance to preserve the superpower status that America fought two world wars and the Cold War to build. Time is not on our side. We are on notice, but we have not noticed.

Product Details :

Genre : Political Science
Author : Brandon J. Weichert
Publisher : Simon and Schuster
Release : 2020-09-15
File : 380 Pages
ISBN-13 : 9781645720126


Cubesat Antenna Design

eBook Download

BOOK EXCERPT:

Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL) CubeSats—nanosatellites built to standard dimensions of 10cm x 10 cm x cm—are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA’s Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective. This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume: Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication Helps readers learn how to develop antennas for future CubeSat missions Provides key information on the effect of space environment on antennas to inform design steps Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.

Product Details :

Genre : Technology & Engineering
Author : Nacer Chahat
Publisher : John Wiley & Sons
Release : 2021-01-07
File : 352 Pages
ISBN-13 : 9781119692584


Contributions To The Advance Of The Integration Density Of Cubesats

eBook Download

BOOK EXCERPT:

This thesis investigates potential technologies to increase the integration density of CubeSats. Observations of the CubeSat market and missions are recorded in order to derive design criteria for high performance single unit CubeSats. A promising approach to increased integration density is relocation of the components of multiple satellite subsystems to form a highly integrated, multi-functional solar panel. Eligible components are usually allocated to the communication system, the electric power system, or the attitude determination and control system. In a joint research project, development, optimization, and miniaturization of those components in order to form a highly integrated, multi-functional solar panel is investigated. The author first summarizes the development work of the project partners for a picosatellite solar antenna and puts it into relation to the overall solar panel design. Advantage of using solar antennas over simple patch antennas is the reduced loss of solar cell area, and hence available electric power, that is usually accompanied by the usage of higher frequency bands for broadband payload data transmission. Magnetic attitude actuators are the backbone of CubeSat attitude control. In order to increase their performance and lower their resource consumption, numerical optimization of the commonly used three coil types is investigated by the author. This leads to the formulation of a novel optimization approach, which is better suited to real-world considerations for magnetic actuator design. Results from the application of the optimization procedure show potential for every coil type. The state of the art of a novel type of attitude control actuators, so-called fluid-dynamic actuators which are based on angular momentum exchange, is advanced by the author by introducing miniaturized 3D-printed conduits for single unit CubeSat applications. Following development and functional verification, actuators are compared to existing reaction wheel systems, which shows their superiority for agile attitude maneuvers and integration with the satellite bus. Further investigation exploits additive manufacturing technologies to create redundancy concepts using four actuators with three-dimensional conduits.Finally, development, optimization, and miniaturization of subsystem components is brought together in the design, assembly, and test of a highly integrated, multi-functional solar panel. Analysis of a single unit CubeSat design that applies different configurations of the multi-functional solar panel shows the potential for more than 50% payload mass and payload volume. This brings integration density of single unit CubeSats to a level similar to that of the larger triple unit form factors currently employed for the New Space mega-constellations. Diese Dissertation untersucht mögliche Technologien zur Erhöhung der Integrationsdichte von CubeSats. Beobachtungen des CubeSat-Marktes und ausgewählter Missionen werden zusammengetragen um Entwurfskriterien für hochperformante 1U CubeSats abzuleiten. Ein vielversprechender Ansatz zur Erhöhung der Integrationsdichte ist der Umzug von Komponenten verschiedener Satellitensubsysteme auf ein zu entwickelndes hochintegriertes, multifunktionales Solarpaneel. Infrage kommende Komponenten sind für gewöhnlich dem Kommunikationssystem, dem Energieversorgungssystem, oder dem Lageregelungssystem zugeordnet. In Rahmen eines gemeinschaftlichen Forschungsvorhabens wurden Entwicklung, Optimierung, und Miniaturisierung ausgewählter Komponenten eines solchen hochintegrierten, multifunktionalen Paneels untersucht. Durch den Autor wird zunächst die Entwicklung einer Solarantenne für Pikosatelliten durch den Projektpartner zusammengefasst und in Zusammenhang um Entwurf des Solarpaneels gebracht. Der Vorteil einer Solarantenne gegenüber einer einfachen Patch-Antenne ist der geringere Verlust an Solarzellenfläche, und damit zur Verfügung stehender elektrischer Leistung, der üblicherweise mit der Verwendung höherer Frequenzbänder zur breitbandigen Nutzlastdatenübertragung einhergeht. Magnetische Lageregelungsaktuatoren bilden das Rückgrat der CubeSat-Lageregelung. Um deren Leistungsfähigkeit zu erhöhen und den Ressourcenverbrauch zu verringern, wird durch den Autor die numerische Optimierung der drei gebräuchlichen Spulentypen untersucht. Dies führt zur Formulierung eines neuartigen Optimierungsansatzes welcher besser für die Anwendung realer Entwurfsprobleme geeignet ist. Die Optimierungsergebnisse zeigen ein großes Potential für die Optimierung aller betrachteter Spulentypen auf. Der Stand der Technik im Bereich neuartiger Lageregelungsaktuatoren, den sogenannten fluiddynamischen Aktuatoren die auf Drehimpulsaustausch basieren, wird durch den Autor durch die Einführung miniaturisierter 3D-gedruckter Kanäle für die Verwendung auf 1U CubeSats vorangebracht. Im Anschluss an die Entwicklung und funktionale Verifikation werden diese Aktuatoren mit existierenden Reaktionsradsystemen verglichen, was deren Überlegenheit bei agilen Lageregelungsmanövern und der Integration in den Satellitenbus aufzeigt. Weitere Untersuchungen nutzen die additiven Herstellungsverfahren zur Darstellung von redundanten Konzepten bestehend aus vier Aktuatoren mit dreidimensionalen Kanalgeometrien. Abschließend werden Entwicklung, Optimierung und Miniaturisierung der Subsystemkomponenten im Entwurf, Aufbau und Test eines hochintegrierten, multifunktionalen Seitenwandpaneels zusammengeführt. Die Analyse eines 1U CubeSat-Entwurfs unter Verwendung verschiedener Konfigurationen des multifunktionalen Solarpaneels zeigt ein Potential für jeweils mehr als 50% verfügbarer Nutzlastmasse und Nutzlastvolumen vom gesamten Satelliten. Dies hebt die Integrationsdichte von 1U CubeSats auf ein ähnliches Niveau der 3U Formfaktoren, welche gegenwärtig bei den New Space Megakonstellationen zur Anwendung kommen.

Product Details :

Genre : Technology & Engineering
Author : Grau, Sebastian
Publisher : Universitätsverlag der TU Berlin
Release : 2019-09-17
File : 174 Pages
ISBN-13 : 9783798330269


Proceedings Of International Conference Of Aerospace And Mechanical Engineering 2019

eBook Download

BOOK EXCERPT:

This book presents selected papers from the International Conference of Aerospace and Mechanical Engineering 2019 (AeroMech 2019), held at the Universiti Sains Malaysia's School of Aerospace Engineering. Sharing new innovations and discoveries concerning the Fourth Industrial Revolution (4IR), with a focus on 3D printing, big data analytics, Internet of Things, advanced human-machine interfaces, smart sensors and location detection technologies, it will appeal to mechanical and aerospace engineers.

Product Details :

Genre : Technology & Engineering
Author : Parvathy Rajendran
Publisher : Springer Nature
Release : 2020-06-12
File : 592 Pages
ISBN-13 : 9789811547560