On The Interior Regularity Of Weak Solutions Of The Navier Stokes Equations

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Differential equations, Partial
Author : James Serrin
Publisher :
Release : 1961
File : 40 Pages
ISBN-13 : UOM:39015095249564



eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author :
Publisher : World Scientific
Release :
File : 1001 Pages
ISBN-13 :


Mathematical Analysis In Fluid Mechanics

eBook Download

BOOK EXCERPT:

This volume contains the proceedings of the International Conference on Vorticity, Rotation and Symmetry (IV)—Complex Fluids and the Issue of Regularity, held from May 8–12, 2017, in Luminy, Marseille, France. The papers cover topics in mathematical fluid mechanics ranging from the classical regularity issue for solutions of the 3D Navier-Stokes system to compressible and non-Newtonian fluids, MHD flows and mixtures of fluids. Topics of different kinds of solutions, boundary conditions, and interfaces are also discussed.

Product Details :

Genre : Mathematics
Author : Raphaël Danchin
Publisher : American Mathematical Soc.
Release : 2018-06-26
File : 254 Pages
ISBN-13 : 9781470436469


Nonlinear Problems In Mathematical Physics And Related Topics I

eBook Download

BOOK EXCERPT:

The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday. O.A. Ladyzhenskaya graduated from the Moscow State University. But throughout her career she has been closely connected with St. Petersburg where she works at the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences. Many generations of mathematicians have become familiar with the nonlinear theory of partial differential equations reading the books on quasilinear elliptic and parabolic equations written by O.A. Ladyzhenskaya with V.A. Solonnikov and N.N. Uraltseva. Her results and methods on the Navier-Stokes equations, and other mathematical problems in the theory of viscous fluids, nonlinear partial differential equations and systems, the regularity theory, some directions of computational analysis are well known. So it is no surprise that these two volumes attracted leading specialists in partial differential equations and mathematical physics from more than 15 countries, who present their new results in the various fields of mathematics in which the results, methods, and ideas of O.A. Ladyzhenskaya played a fundamental role. Nonlinear Problems in Mathematical Physics and Related Topics I presents new results from distinguished specialists in the theory of partial differential equations and analysis. A large part of the material is devoted to the Navier-Stokes equations, which play an important role in the theory of viscous fluids. In particular, the existence of a local strong solution (in the sense of Ladyzhenskaya) to the problem describing some special motion in a Navier-Stokes fluid is established. Ladyzhenskaya's results on axially symmetric solutions to the Navier-Stokes fluid are generalized and solutions with fast decay of nonstationary Navier-Stokes equations in the half-space are stated. Application of the Fourier-analysis to the study of the Stokes wave problem and some interesting properties of the Stokes problem are presented. The nonstationary Stokes problem is also investigated in nonconvex domains and some Lp-estimates for the first-order derivatives of solutions are obtained. New results in the theory of fully nonlinear equations are presented. Some asymptotics are derived for elliptic operators with strongly degenerated symbols. New results are also presented for variational problems connected with phase transitions of means in controllable dynamical systems, nonlocal problems for quasilinear parabolic equations, elliptic variational problems with nonstandard growth, and some sufficient conditions for the regularity of lateral boundary. Additionally, new results are presented on area formulas, estimates for eigenvalues in the case of the weighted Laplacian on Metric graph, application of the direct Lyapunov method in continuum mechanics, singular perturbation property of capillary surfaces, partially free boundary problem for parametric double integrals.

Product Details :

Genre : Mathematics
Author : Michael Sh. Birman
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 397 Pages
ISBN-13 : 9781461507772


Trends In Partial Differential Equations Of Mathematical Physics

eBook Download

BOOK EXCERPT:

Vsevolod Alekseevich Solonnikov is known as one of the outstanding mathematicians from the St. Petersburg Mathematical School. His remarkable results on exact estimates of solutions to boundary and initial-boundary value problems for linear elliptic, parabolic, Stokes and Navier-Stokes systems, his methods and contributions to the inverstigation of free boundary problems, in particular in fluid mechanics, are well known to specialists all over the world. The International Conference on "Trends in Partial Differential Equations of Mathematical Physics" was held on the occasion of his 70th birthday in ??bidos (Portugal) from June 7 to 10, 2003. The conference consisted of thirty-eight invited and contributed lectures and gathered, in the charming and unique medieval town of ??bidos, about sixty participants from fifteen countries. This book contains twenty original contributions on many topics related to V.A. Solonnikov's work, selected from the invited talks of the conference.

Product Details :

Genre : Mathematics
Author : José F. Rodrigues
Publisher : Springer Science & Business Media
Release : 2005-01-27
File : 300 Pages
ISBN-13 : 376437165X


Mathematical Fluid Mechanics

eBook Download

BOOK EXCERPT:

Mathematical modeling and numerical simulation in fluid mechanics are topics of great importance both in theory and technical applications. The present book attempts to describe the current status in various areas of research. The 10 chapters, mostly survey articles, are written by internationally renowned specialists and offer a range of approaches to and views of the essential questions and problems. In particular, the theories of incompressible and compressible Navier-Stokes equations are considered, as well as stability theory and numerical methods in fluid mechanics. Although the book is primarily written for researchers in the field, it will also serve as a valuable source of information to graduate students.

Product Details :

Genre : Mathematics
Author : Jiri Neustupa
Publisher : Birkhäuser
Release : 2012-12-06
File : 271 Pages
ISBN-13 : 9783034882439


Recent Developments In The Navier Stokes Problem

eBook Download

BOOK EXCERPT:

The Navier-Stokes equations: fascinating, fundamentally important, and challenging,. Although many questions remain open, progress has been made in recent years. The regularity criterion of Caffarelli, Kohn, and Nirenberg led to many new results on existence and non-existence of solutions, and the very active search for mild solutions in the 1990's culminated in the theorem of Koch and Tataru that, in some ways, provides a definitive answer. Recent Developments in the Navier-Stokes Problem brings these and other advances together in a self-contained exposition presented from the perspective of real harmonic analysis. The author first builds a careful foundation in real harmonic analysis, introducing all the material needed for his later discussions. He then studies the Navier-Stokes equations on the whole space, exploring previously scattered results such as the decay of solutions in space and in time, uniqueness, self-similar solutions, the decay of Lebesgue or Besov norms of solutions, and the existence of solutions for a uniformly locally square integrable initial value. Many of the proofs and statements are original and, to the extent possible, presented in the context of real harmonic analysis. Although the existence, regularity, and uniqueness of solutions to the Navier-Stokes equations continue to be a challenge, this book is a welcome opportunity for mathematicians and physicists alike to explore the problem's intricacies from a new and enlightening perspective.

Product Details :

Genre : Mathematics
Author : Pierre Gilles Lemarie-Rieusset
Publisher : CRC Press
Release : 2002-04-26
File : 412 Pages
ISBN-13 : 1420035673


The Navier Stokes Equations

eBook Download

BOOK EXCERPT:

This book offers an elementary, self-contained approach to the mathematical theory of viscous, incompressible fluid in a domain of the Euclidian space, described by the equations of Navier-Stokes. It is the first to provide a systematic treatment of the subject. It is designed for students familiar with basic tools in Hilbert and Banach spaces, but fundamental properties of, for example, Sobolev spaces, are collected in the first two chapters.

Product Details :

Genre : Mathematics
Author : Hermann Sohr
Publisher : Birkhäuser
Release : 2013-11-27
File : 375 Pages
ISBN-13 : 9783034882552


New Trends In Differential And Difference Equations And Applications

eBook Download

BOOK EXCERPT:

This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques used in these different areas and to emphasize their applicability to real-life phenomena, by the inclusion of examples. These examples not only clarify the theoretical results presented, but also provide insight on how to apply, for future works, the techniques used.

Product Details :

Genre : Mathematics
Author : Feliz Manuel Minhós
Publisher : MDPI
Release : 2019-10-14
File : 198 Pages
ISBN-13 : 9783039215386


Mathematical Analysis Of The Navier Stokes Equations

eBook Download

BOOK EXCERPT:

This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.

Product Details :

Genre : Mathematics
Author : Matthias Hieber
Publisher : Springer Nature
Release : 2020-04-28
File : 471 Pages
ISBN-13 : 9783030362263