Online Visual Tracking

eBook Download

BOOK EXCERPT:

This book presents the state of the art in online visual tracking, including the motivations, practical algorithms, and experimental evaluations. Visual tracking remains a highly active area of research in Computer Vision and the performance under complex scenarios has substantially improved, driven by the high demand in connection with real-world applications and the recent advances in machine learning. A large variety of new algorithms have been proposed in the literature over the last two decades, with mixed success. Chapters 1 to 6 introduce readers to tracking methods based on online learning algorithms, including sparse representation, dictionary learning, hashing codes, local model, and model fusion. In Chapter 7, visual tracking is formulated as a foreground/background segmentation problem, and tracking methods based on superpixels and end-to-end deep networks are presented. In turn, Chapters 8 and 9 introduce the cutting-edge tracking methods based on correlation filter and deep learning. Chapter 10 summarizes the book and points out potential future research directions for visual tracking. The book is self-contained and suited for all researchers, professionals and postgraduate students working in the fields of computer vision, pattern recognition, and machine learning. It will help these readers grasp the insights provided by cutting-edge research, and benefit from the practical techniques available for designing effective visual tracking algorithms. Further, the source codes or results of most algorithms in the book are provided at an accompanying website.

Product Details :

Genre : Computers
Author : Huchuan Lu
Publisher : Springer
Release : 2019-05-30
File : 134 Pages
ISBN-13 : 9789811304699


Online Visual Tracking Ofweighted Multiple Instance Learning Via Neutrosophic Similarity Based Objectness Estimation

eBook Download

BOOK EXCERPT:

An online neutrosophic similarity-based objectness tracking with a weighted multiple instance learning algorithm (NeutWMIL) is proposed. Each training sample is extracted surrounding the object location, and the distribution of these samples is symmetric. To provide a more robust weight for each sample in the positive bag, the asymmetry of the importance of the samples is considered. The neutrosophic similarity-based objectness estimation with object properties (super straddling) is applied.

Product Details :

Genre : Mathematics
Author : Keli Hu
Publisher : Infinite Study
Release :
File : 24 Pages
ISBN-13 :


Visual Object Tracking Using Deep Learning

eBook Download

BOOK EXCERPT:

This book covers the description of both conventional methods and advanced methods. In conventional methods, visual tracking techniques such as stochastic, deterministic, generative, and discriminative are discussed. The conventional techniques are further explored for multi-stage and collaborative frameworks. In advanced methods, various categories of deep learning-based trackers and correlation filter-based trackers are analyzed. The book also: Discusses potential performance metrics used for comparing the efficiency and effectiveness of various visual tracking methods Elaborates on the salient features of deep learning trackers along with traditional trackers, wherein the handcrafted features are fused to reduce computational complexity Illustrates various categories of correlation filter-based trackers suitable for superior and efficient performance under tedious tracking scenarios Explores the future research directions for visual tracking by analyzing the real-time applications The book comprehensively discusses various deep learning-based tracking architectures along with conventional tracking methods. It covers in-depth analysis of various feature extraction techniques, evaluation metrics and benchmark available for performance evaluation of tracking frameworks. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology.

Product Details :

Genre : Technology & Engineering
Author : Ashish Kumar
Publisher : CRC Press
Release : 2023-11-20
File : 216 Pages
ISBN-13 : 9781000990980


Video Object Tracking

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Ning Xu
Publisher : Springer Nature
Release :
File : 130 Pages
ISBN-13 : 9783031446603


Visual Object Tracking From Correlation Filter To Deep Learning

eBook Download

BOOK EXCERPT:

The book focuses on visual object tracking systems and approaches based on correlation filter and deep learning. Both foundations and implementations have been addressed. The algorithm, system design and performance evaluation have been explored for three kinds of tracking methods including correlation filter based methods, correlation filter with deep feature based methods, and deep learning based methods. Firstly, context aware and multi-scale strategy are presented in correlation filter based trackers; then, long-short term correlation filter, context aware correlation filter and auxiliary relocation in SiamFC framework are proposed for combining correlation filter and deep learning in visual object tracking; finally, improvements in deep learning based trackers including Siamese network, GAN and reinforcement learning are designed. The goal of this book is to bring, in a timely fashion, the latest advances and developments in visual object tracking, especially correlation filter and deep learning based methods, which is particularly suited for readers who are interested in the research and technology innovation in visual object tracking and related fields.

Product Details :

Genre : Computers
Author : Weiwei Xing
Publisher : Springer Nature
Release : 2021-11-18
File : 202 Pages
ISBN-13 : 9789811662423


Computer Vision

eBook Download

BOOK EXCERPT:

This three volume set, CCIS 771, 772, 773, constitutes the refereed proceedings of the CCF Chinese Conference on Computer Vision, CCCV 2017, held in Tianjin, China, in October 2017. The total of 174 revised full papers presented in three volumes were carefully reviewed and selected from 465 submissions. The papers are organized in the following topical sections: biological vision inspired visual method; biomedical image analysis; computer vision applications; deep neural network; face and posture analysis; image and video retrieval; image color and texture; image composition; image quality assessment and analysis; image restoration; image segmentation and classification; image-based modeling; object detection and classification; object identification; photography and video; robot vision; shape representation and matching; statistical methods and learning; video analysis and event recognition; visual salient detection.

Product Details :

Genre : Computers
Author : Jinfeng Yang
Publisher : Springer
Release : 2017-12-07
File : 740 Pages
ISBN-13 : 9789811073052


Visual Sensors

eBook Download

BOOK EXCERPT:

Visual sensors are able to capture a large quantity of information from the environment around them. A wide variety of visual systems can be found, from the classical monocular systems to omnidirectional, RGB-D, and more sophisticated 3D systems. Every configuration presents some specific characteristics that make them useful for solving different problems. Their range of applications is wide and varied, including robotics, industry, agriculture, quality control, visual inspection, surveillance, autonomous driving, and navigation aid systems. In this book, several problems that employ visual sensors are presented. Among them, we highlight visual SLAM, image retrieval, manipulation, calibration, object recognition, navigation, etc.

Product Details :

Genre : Technology & Engineering
Author : Oscar Reinoso
Publisher : MDPI
Release : 2020-03-27
File : 738 Pages
ISBN-13 : 9783039283385


Computer Vision Eccv 2020

eBook Download

BOOK EXCERPT:

The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Product Details :

Genre : Computers
Author : Andrea Vedaldi
Publisher : Springer Nature
Release : 2020-11-16
File : 826 Pages
ISBN-13 : 9783030585426


Computer Vision

eBook Download

BOOK EXCERPT:

The two volumes CCIS 546 and 547 constitute the refereed proceedings of the CCF Chinese Conference on Computer Vision, CCCV 2015, held in Xi'an, China, in September 2015. The total of 89 revised full papers presented in both volumes were carefully reviewed and selected from 176 submissions. The papers address issues such as computer vision, machine learning, pattern recognition, target recognition, object detection, target tracking, image segmentation, image restoration, face recognition, image classification.

Product Details :

Genre : Computers
Author : Honbin Zha
Publisher : Springer
Release : 2015-09-18
File : 481 Pages
ISBN-13 : 9783662485583


Pattern Recognition And Computer Vision

eBook Download

BOOK EXCERPT:

The three-volume set LNCS 11857, 11858, and 11859 constitutes the refereed proceedings of the Second Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2019, held in Xi’an, China, in November 2019. The 165 revised full papers presented were carefully reviewed and selected from 412 submissions. The papers have been organized in the following topical sections: Part I: Object Detection, Tracking and Recognition, Part II: Image/Video Processing and Analysis, Part III: Data Analysis and Optimization.

Product Details :

Genre : Computers
Author : Zhouchen Lin
Publisher : Springer Nature
Release : 2019-10-31
File : 655 Pages
ISBN-13 : 9783030316549