Ordinary Differential Equations And Integral Equations

eBook Download

BOOK EXCERPT:

/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods).John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?"Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices.The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour.Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems.Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions.Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions.Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods.Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory.Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages.Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields.Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems.Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems.Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems.Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions.The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect.Many phenomena incorporate noise, and the numerical solution of

Product Details :

Genre : Mathematics
Author : C.T.H. Baker
Publisher : Elsevier
Release : 2001-06-20
File : 559 Pages
ISBN-13 : 9780080929552


Lectures On Differential And Integral Equations

eBook Download

BOOK EXCERPT:

Lucid, self-contained exposition of theory of ordinary differential equations and integral equations. Boundary value problem of second order linear ordinary differential equations, Fredholm integral equations, many other topics. Bibliography. 1960 edition.

Product Details :

Genre : Mathematics
Author : K?saku Yoshida
Publisher : Courier Corporation
Release : 1991-01-01
File : 242 Pages
ISBN-13 : 0486666794


Linear Integral Equations

eBook Download

BOOK EXCERPT:

Many physical problems that are usually solved by differential equation methods can be solved more effectively by integral equation methods. Such problems abound in applied mathematics, theoretical mechanics, and mathematical physics. This uncorrected soft cover reprint of the second edition places the emphasis on applications and presents a variety of techniques with extensive examples.Originally published in 1971, Linear Integral Equations is ideal as a text for a beginning graduate level course. Its treatment of boundary value problems also makes the book useful to researchers in many applied fields.

Product Details :

Genre : Mathematics
Author : Ram P. Kanwal
Publisher : Springer Science & Business Media
Release : 2012-11-07
File : 332 Pages
ISBN-13 : 9781461460121


Integral Equations

eBook Download

BOOK EXCERPT:

The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.

Product Details :

Genre : Mathematics
Author : Wolfgang Hackbusch
Publisher : Springer Science & Business Media
Release : 1995-06-01
File : 384 Pages
ISBN-13 : 3764328711


Numerical Methods In Economics

eBook Download

BOOK EXCERPT:

To harness the full power of computer technology, economists need to use a broad range of mathematical techniques. In this book, Kenneth Judd presents techniques from the numerical analysis and applied mathematics literatures and shows how to use them in economic analyses. The book is divided into five parts. Part I provides a general introduction. Part II presents basics from numerical analysis on R^n, including linear equations, iterative methods, optimization, nonlinear equations, approximation methods, numerical integration and differentiation, and Monte Carlo methods. Part III covers methods for dynamic problems, including finite difference methods, projection methods, and numerical dynamic programming. Part IV covers perturbation and asymptotic solution methods. Finally, Part V covers applications to dynamic equilibrium analysis, including solution methods for perfect foresight models and rational expectation models. A website contains supplementary material including programs and answers to exercises.

Product Details :

Genre : Business & Economics
Author : Kenneth L. Judd
Publisher : MIT Press
Release : 1998-09-28
File : 662 Pages
ISBN-13 : 0262100711


Computational Methods For Linear Integral Equations

eBook Download

BOOK EXCERPT:

This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.

Product Details :

Genre : Mathematics
Author : Prem Kythe
Publisher : Springer Science & Business Media
Release : 2011-06-28
File : 525 Pages
ISBN-13 : 9781461201014


Linear Integral Equations

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Integral equations
Author : Ernest Godfrey Kimme
Publisher :
Release : 1959
File : 136 Pages
ISBN-13 : IOWA:31858047385962


Techniques Of Functional Analysis For Differential And Integral Equations

eBook Download

BOOK EXCERPT:

Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics

Product Details :

Genre : Mathematics
Author : Paul Sacks
Publisher : Academic Press
Release : 2017-05-16
File : 322 Pages
ISBN-13 : 9780128114575


Applied Mathematics In Hydraulic Engineering An Introduction To Nonlinear Differential Equations

eBook Download

BOOK EXCERPT:

Applied Mathematics in Hydraulic Engineering is an excellent teaching guide and reference to treating nonlinear mathematical problems in hydraulic, hydrologic and coastal engineering. Undergraduates studying civil and coastal engineering, as well as analysis and differential equations, are started off applying calculus to the treatment of nonlinear partial differential equations, before given the chance to practice real-life problems related to the fields. This textbook is not only a good source of teaching materials for teachers or instructors, but is also useful as a comprehensive resource of mathematical tools to researchers.

Product Details :

Genre : Technology & Engineering
Author : Kazumasa Mizumura
Publisher : World Scientific Publishing Company
Release : 2011-05-26
File : 437 Pages
ISBN-13 : 9789813107854


Collocation Methods For Volterra Integral And Related Functional Differential Equations

eBook Download

BOOK EXCERPT:

Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

Product Details :

Genre : Mathematics
Author : Hermann Brunner
Publisher : Cambridge University Press
Release : 2004-11-15
File : 620 Pages
ISBN-13 : 0521806151