WELCOME TO THE LIBRARY!!!
What are you looking for Book "Partially Observed Markov Decision Processes" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
Covering formulation, algorithms, and structural results, and linking theory to real-world applications in controlled sensing (including social learning, adaptive radars and sequential detection), this book focuses on the conceptual foundations of partially observed Markov decision processes (POMDPs). It emphasizes structural results in stochastic dynamic programming, enabling graduate students and researchers in engineering, operations research, and economics to understand the underlying unifying themes without getting weighed down by mathematical technicalities. Bringing together research from across the literature, the book provides an introduction to nonlinear filtering followed by a systematic development of stochastic dynamic programming, lattice programming and reinforcement learning for POMDPs. Questions addressed in the book include: when does a POMDP have a threshold optimal policy? When are myopic policies optimal? How do local and global decision makers interact in adaptive decision making in multi-agent social learning where there is herding and data incest? And how can sophisticated radars and sensors adapt their sensing in real time?
Product Details :
Genre |
: Technology & Engineering |
Author |
: Vikram Krishnamurthy |
Publisher |
: Cambridge University Press |
Release |
: 2016-03-21 |
File |
: 491 Pages |
ISBN-13 |
: 9781316594780 |
eBook Download
BOOK EXCERPT:
The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).
Product Details :
Genre |
: Mathematics |
Author |
: Nicole Bäuerle |
Publisher |
: Springer Science & Business Media |
Release |
: 2011-06-06 |
File |
: 393 Pages |
ISBN-13 |
: 9783642183249 |
eBook Download
BOOK EXCERPT:
Decision making arises when we wish to select the best possible course of action from a set of alternatives. With advancements of the digital technologies, it is easy, and almost instantaneous, to gather a large volume of information and/or data pertaining to a problem that we want to solve. For instance, the world-wi- web is perhaps the primary source of information and/or data that we often turn to when we face a decision making problem. However, the information and/or data that we obtain from the real world often are complex, and comprise various kinds of noise. Besides, real-world information and/or data often are incomplete and ambiguous, owing to uncertainties of the environments. All these make decision making a challenging task. To cope with the challenges of decision making, - searchers have designed and developed a variety of decision support systems to provide assistance in human decision making processes. The main aim of this book is to provide a small collection of techniques stemmed from artificial intelligence, as well as other complementary methodo- gies, that are useful for the design and development of intelligent decision support systems. Application examples of how these intelligent decision support systems can be utilized to help tackle a variety of real-world problems in different - mains, e. g. business, management, manufacturing, transportation and food ind- tries, and biomedicine, are also presented. A total of twenty chapters, which can be broadly divided into two parts, i. e.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Chee Peng Lim |
Publisher |
: Springer Science & Business Media |
Release |
: 2010-09-07 |
File |
: 539 Pages |
ISBN-13 |
: 9783642136399 |
eBook Download
BOOK EXCERPT:
This two-volume set of texts explores the central facts and ideas of stochastic processes, illustrating their use in models based on applied and theoretical investigations. They demonstrate the interdependence of three areas of study that usually receive separate treatments: stochastic processes, operating characteristics of stochastic systems, and stochastic optimization. Comprehensive in its scope, they emphasize the practical importance, intellectual stimulation, and mathematical elegance of stochastic models and are intended primarily as graduate-level texts.
Product Details :
Genre |
: Mathematics |
Author |
: Daniel P. Heyman |
Publisher |
: Courier Corporation |
Release |
: 2004-01-01 |
File |
: 580 Pages |
ISBN-13 |
: 0486432602 |
eBook Download
BOOK EXCERPT:
Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.
Product Details :
Genre |
: Business & Economics |
Author |
: Eugene A. Feinberg |
Publisher |
: Springer Science & Business Media |
Release |
: 2012-12-06 |
File |
: 560 Pages |
ISBN-13 |
: 9781461508052 |
eBook Download
BOOK EXCERPT:
This book constitutes the proceedings of the 19th Annual German Conference on Artificial Intelligence, KI-95, held in Bielefeld in September 1995. The volume opens with full versions of four invited papers devoted to the topic "From Intelligence Models to Intelligent Systems". The main part of the book consists of 17 refereed full papers carefully relected by the program committee; these papers are organized in sections on knowledge organization and optimization, logic and reasoning, nonmonotonicity, action and change, and spatial reasoning.
Product Details :
Genre |
: Computers |
Author |
: Ipke Wachsmuth |
Publisher |
: Springer Science & Business Media |
Release |
: 1995-09-04 |
File |
: 292 Pages |
ISBN-13 |
: 3540603433 |
eBook Download
BOOK EXCERPT:
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association
Product Details :
Genre |
: Mathematics |
Author |
: Martin L. Puterman |
Publisher |
: John Wiley & Sons |
Release |
: 2014-08-28 |
File |
: 544 Pages |
ISBN-13 |
: 9781118625873 |
eBook Download
BOOK EXCERPT:
Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as reinforcement learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in artificial intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, reinforcement learning, partially observable MDPs, Markov games and the use of non-classical criteria). It then presents more advanced research trends in the field and gives some concrete examples using illustrative real life applications.
Product Details :
Genre |
: Technology & Engineering |
Author |
: Olivier Sigaud |
Publisher |
: John Wiley & Sons |
Release |
: 2013-03-04 |
File |
: 367 Pages |
ISBN-13 |
: 9781118620106 |
eBook Download
BOOK EXCERPT:
This book presents classical Markov Decision Processes (MDP) for real-life applications and optimization. MDP allows users to develop and formally support approximate and simple decision rules, and this book showcases state-of-the-art applications in which MDP was key to the solution approach. The book is divided into six parts. Part 1 is devoted to the state-of-the-art theoretical foundation of MDP, including approximate methods such as policy improvement, successive approximation and infinite state spaces as well as an instructive chapter on Approximate Dynamic Programming. It then continues with five parts of specific and non-exhaustive application areas. Part 2 covers MDP healthcare applications, which includes different screening procedures, appointment scheduling, ambulance scheduling and blood management. Part 3 explores MDP modeling within transportation. This ranges from public to private transportation, from airports and traffic lights to car parking or charging your electric car . Part 4 contains three chapters that illustrates the structure of approximate policies for production or manufacturing structures. In Part 5, communications is highlighted as an important application area for MDP. It includes Gittins indices, down-to-earth call centers and wireless sensor networks. Finally Part 6 is dedicated to financial modeling, offering an instructive review to account for financial portfolios and derivatives under proportional transactional costs. The MDP applications in this book illustrate a variety of both standard and non-standard aspects of MDP modeling and its practical use. This book should appeal to readers for practitioning, academic research and educational purposes, with a background in, among others, operations research, mathematics, computer science, and industrial engineering.
Product Details :
Genre |
: Business & Economics |
Author |
: Richard J. Boucherie |
Publisher |
: Springer |
Release |
: 2017-03-10 |
File |
: 563 Pages |
ISBN-13 |
: 9783319477664 |
eBook Download
BOOK EXCERPT:
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
Product Details :
Genre |
: Computers |
Author |
: Mykel J. Kochenderfer |
Publisher |
: MIT Press |
Release |
: 2015-07-17 |
File |
: 350 Pages |
ISBN-13 |
: 9780262029254 |