Pattern Recognition And Neural Networks

eBook Download

BOOK EXCERPT:

This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.

Product Details :

Genre : Computers
Author : Brian D. Ripley
Publisher : Cambridge University Press
Release : 2007
File : 420 Pages
ISBN-13 : 0521717701


Neural Networks And Pattern Recognition

eBook Download

BOOK EXCERPT:

This book is one of the most up-to-date and cutting-edge texts available on the rapidly growing application area of neural networks. Neural Networks and Pattern Recognition focuses on the use of neural networksin pattern recognition, a very important application area for neural networks technology. The contributors are widely known and highly respected researchers and practitioners in the field. - Features neural network architectures on the cutting edge of neural network research - Brings together highly innovative ideas on dynamical neural networks - Includes articles written by authors prominent in the neural networks research community - Provides an authoritative, technically correct presentation of each specific technical area

Product Details :

Genre : Science
Author : Omid Omidvar
Publisher : Elsevier
Release : 1997-10-29
File : 369 Pages
ISBN-13 : 9780080512617


Neural Networks For Pattern Recognition

eBook Download

BOOK EXCERPT:

Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.

Product Details :

Genre : Computers
Author : Christopher M. Bishop
Publisher : Oxford University Press
Release : 1995-11-23
File : 501 Pages
ISBN-13 : 9780198538646


Neural Networks For Pattern Recognition

eBook Download

BOOK EXCERPT:

In a simple and accessible way it extends embedding field theory into areas of machine intelligence that have not been clearly dealt with before. Neural Networks for Pattern Recognition takes the pioneering work in artificial neural networks by Stephen Grossberg and his colleagues to a new level. In a simple and accessible way it extends embedding field theory into areas of machine intelligence that have not been clearly dealt with before. Following a tutorial of existing neural networks for pattern classification, Nigrin expands on these networks to present fundamentally new architectures that perform realtime pattern classification of embedded and synonymous patterns and that will aid in tasks such as vision, speech recognition, sensor fusion, and constraint satisfaction. Nigrin presents the new architectures in two stages. First he presents a network called Sonnet 1 that already achieves important properties such as the ability to learn and segment continuously varied input patterns in real time, to process patterns in a context sensitive fashion, and to learn new patterns without degrading existing categories. He then removes simplifications inherent in Sonnet 1 and introduces radically new architectures. These architectures have the power to classify patterns that may have similar meanings but that have different external appearances (synonyms). They also have been designed to represent patterns in a distributed fashion, both in short-term and long-term memory.

Product Details :

Genre : Computers
Author : Albert Nigrin
Publisher : MIT Press
Release : 1993
File : 450 Pages
ISBN-13 : 0262140543


Neural Networks In Pattern Recognition And Their Applications

eBook Download

BOOK EXCERPT:

The revitalization of neural network research in the past few years has already had a great impact on research and development in pattern recognition and artificial intelligence. Although neural network functions are not limited to pattern recognition, there is no doubt that a renewed progress in pattern recognition and its applications now critically depends on neural networks. This volume specially brings together outstanding original research papers in the area and aims to help the continued progress in pattern recognition and its applications.

Product Details :

Genre : Computers
Author : Chi Hau Chen
Publisher : World Scientific
Release : 1991-12-27
File : 176 Pages
ISBN-13 : 9789814505994


Pattern Recognition By Self Organizing Neural Networks

eBook Download

BOOK EXCERPT:

Pattern Recognition by Self-Organizing Neural Networks presentsthe most recent advances in an area of research that is becoming vitally important in the fields ofcognitive science, neuroscience, artificial intelligence, and neural networks in general. The 19articles take up developments in competitive learning and computational maps, adaptive resonancetheory, and specialized architectures and biological connections. Introductorysurvey articles provide a framework for understanding the many models involved in various approachesto studying neural networks. These are followed in Part 2 by articles that form the foundation formodels of competitive learning and computational mapping, and recent articles by Kohonen, applyingthem to problems in speech recognition, and by Hecht-Nielsen, applying them to problems in designingadaptive lookup tables. Articles in Part 3 focus on adaptive resonance theory (ART) networks,selforganizing pattern recognition systems whose top-down template feedback signals guarantee theirstable learning in response to arbitrary sequences of input patterns. In Part 4, articles describeembedding ART modules into larger architectures and provide experimental evidence fromneurophysiology, event-related potentials, and psychology that support the prediction that ARTmechanisms exist in the brain. Contributors: J.-P. Banquet, G.A. Carpenter, S.Grossberg, R. Hecht-Nielsen, T. Kohonen, B. Kosko, T.W. Ryan, N.A. Schmajuk, W. Singer, D. Stork, C.von der Malsburg, C.L. Winter.

Product Details :

Genre : Computers
Author : Gail A. Carpenter
Publisher : MIT Press
Release : 1991
File : 724 Pages
ISBN-13 : 0262031760


Pattern Recognition Using Neural And Functional Networks

eBook Download

BOOK EXCERPT:

Biologically inspiredcomputing isdi?erentfromconventionalcomputing.Ithas adi?erentfeel; often the terminology does notsound like it’stalkingabout machines.The activities ofthiscomputingsoundmorehumanthanmechanistic as peoplespeak ofmachines that behave, react, self-organize,learn, generalize, remember andeven to forget.Much ofthistechnology tries to mimic nature’s approach in orderto mimicsome of nature’s capabilities.They havearigorous, mathematical basisand neuralnetworks forexamplehaveastatistically valid set on which the network istrained. Twooutlinesaresuggestedasthepossibletracksforpatternrecognition.They are neuralnetworks andfunctionalnetworks.NeuralNetworks (many interc- nected elements operating in parallel) carryout tasks that are not only beyond the scope ofconventionalprocessing but also cannotbeunderstood in the same terms.Imagingapplicationsfor neuralnetworksseemtobea natural?t.Neural networks loveto do pattern recognition. A new approachto pattern recognition usingmicroARTMAP together with wavelet transforms in the context ofhand written characters,gestures andsignatures havebeen dealt.The KohonenN- work,Back Propagation Networks andCompetitive Hop?eld NeuralNetwork havebeen considered for various applications. Functionalnetworks,beingageneralizedformofNeuralNetworkswherefu- tionsarelearnedratherthanweightsiscomparedwithMultipleRegressionAn- ysisforsome applicationsandtheresults are seen to be coincident. New kinds of intelligence can be added to machines, and we will havethe possibilityof learningmore about learning.Thus our imaginationsand options are beingstretched.These new machines will be fault-tolerant,intelligentand self-programmingthustryingtomakethemachinessmarter.Soastomakethose who use the techniques even smarter. Chapter1 isabrief introduction toNeural and Functionalnetworks in the context of Patternrecognitionusing these disciplinesChapter2 givesa review ofthearchitectures relevantto the investigation andthedevelopment ofthese technologies in the past few decades. Retracted VIII Preface Chapter3begins with the lookattherecognition ofhandwritten alphabets usingthealgorithm for ordered list ofboundary pixelsas well as the Ko- nenSelf-Organizing Map (SOM).Chapter 4 describes the architecture ofthe MicroARTMAP and its capability.

Product Details :

Genre : Mathematics
Author : Vasantha Kalyani David
Publisher : Springer Science & Business Media
Release : 2008-11-20
File : 198 Pages
ISBN-13 : 9783540851295


Artificial Neural Networks In Pattern Recognition

eBook Download

BOOK EXCERPT:

This book constitutes the refereed proceedings of the 10th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2022, held in Dubai, UAE, in November 2022. The 16 revised full papers presented were carefully reviewed and selected from 24 submissions. The conference presents papers on subject such as pattern recognition and machine learning based on artificial neural networks.

Product Details :

Genre : Computers
Author : Neamat El Gayar
Publisher : Springer Nature
Release : 2022-11-10
File : 213 Pages
ISBN-13 : 9783031206504


Artificial Neural Networks In Pattern Recognition

eBook Download

BOOK EXCERPT:

Artificial Neural Networks in Pattern Recognition synthesizes the proceedings of the 4th IAPR TC3 Workshop, ANNPR 2010. Topics include supervised and unsupervised learning, feature selection, pattern recognition in signal and image processing.

Product Details :

Genre : Computers
Author : Friedhelm Schwenker
Publisher : Springer
Release : 2010-04-16
File : 283 Pages
ISBN-13 : 9783642121593


Granular Neural Networks Pattern Recognition And Bioinformatics

eBook Download

BOOK EXCERPT:

This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinformatics applications. The book is recommended for both students and practitioners working in computer science, electrical engineering, data science, system design, pattern recognition, image analysis, neural computing, social network analysis, big data analytics, computational biology and soft computing.

Product Details :

Genre : Technology & Engineering
Author : Sankar K. Pal
Publisher : Springer
Release : 2017-05-02
File : 241 Pages
ISBN-13 : 9783319571157