Pencils Of Cubics And Algebraic Curves In The Real Projective Plane

eBook Download

BOOK EXCERPT:

Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP2. Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert’s sixteenth problem About the Author: Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.

Product Details :

Genre : Mathematics
Author : Séverine Fiedler - Le Touzé
Publisher : CRC Press
Release : 2018-12-07
File : 226 Pages
ISBN-13 : 9780429838255


Pencils Of Cubics And Algebraic Curves In The Real Projective Plane

eBook Download

BOOK EXCERPT:

Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP2. Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert’s sixteenth problem About the Author: Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.

Product Details :

Genre : Mathematics
Author : Séverine Fiedler - Le Touzé
Publisher : CRC Press
Release : 2018-12-07
File : 225 Pages
ISBN-13 : 9780429838248


Algebraic Curves

eBook Download

BOOK EXCERPT:

This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves – such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points – are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework

Product Details :

Genre : Mathematics
Author : Maxim E. Kazaryan
Publisher : Springer
Release : 2019-01-21
File : 237 Pages
ISBN-13 : 9783030029432


Pythagorean Hodograph Curves Algebra And Geometry Inseparable

eBook Download

BOOK EXCERPT:

By virtue of their special algebraic structures, Pythagorean-hodograph (PH) curves offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. This book offers a comprehensive and self-contained treatment of the mathematical theory of PH curves, including algorithms for their construction and examples of their practical applications. It emphasizes the interplay of ideas from algebra and geometry and their historical origins and includes many figures, worked examples, and detailed algorithm descriptions.

Product Details :

Genre : Mathematics
Author : Rida T Farouki
Publisher : Springer Science & Business Media
Release : 2008-02-01
File : 725 Pages
ISBN-13 : 9783540733980


Geometry

eBook Download

BOOK EXCERPT:

Geometry, this very ancient field of study of mathematics, frequently remains too little familiar to students. Michle Audin, professor at the University of Strasbourg, has written a book allowing them to remedy this situation and, starting from linear algebra, extend their knowledge of affine, Euclidean and projective geometry, conic sections and quadrics, curves and surfaces. It includes many nice theorems like the nine-point circle, Feuerbach's theorem, and so on. Everything is presented clearly and rigourously. Each property is proved, examples and exercises illustrate the course content perfectly. Precise hints for most of the exercises are provided at the end of the book. This very comprehensive text is addressed to students at upper undergraduate and Master's level to discover geometry and deepen their knowledge and understanding.

Product Details :

Genre : Mathematics
Author : Michele Audin
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 361 Pages
ISBN-13 : 9783642561276


The Universe Of Conics

eBook Download

BOOK EXCERPT:

This text presents the classical theory of conics in a modern form. It includes many novel results that are not easily accessible elsewhere. The approach combines synthetic and analytic methods to derive projective, affine and metrical properties, covering both Euclidean and non-Euclidean geometries. With more than two thousand years of history, conic sections play a fundamental role in numerous fields of mathematics and physics, with applications to mechanical engineering, architecture, astronomy, design and computer graphics. This text will be invaluable to undergraduate mathematics students, those in adjacent fields of study, and anyone with an interest in classical geometry. Augmented with more than three hundred fifty figures and photographs, this innovative text will enhance your understanding of projective geometry, linear algebra, mechanics, and differential geometry, with careful exposition and many illustrative exercises.

Product Details :

Genre : Mathematics
Author : Georg Glaeser
Publisher : Springer
Release : 2016-03-22
File : 496 Pages
ISBN-13 : 9783662454503


Mathematical Reviews

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Mathematics
Author :
Publisher :
Release : 2007
File : 868 Pages
ISBN-13 : UOM:39015078588590


Encyclopaedia Of Mathematics

eBook Download

BOOK EXCERPT:

This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

Product Details :

Genre : Mathematics
Author : Michiel Hazewinkel
Publisher : Springer Science & Business Media
Release : 1993-01-31
File : 556 Pages
ISBN-13 : 9781556080081


Projective Geometry

eBook Download

BOOK EXCERPT:

The purpose of this book is to revive some of the beautiful results obtained by various geometers of the 19th century, and to give its readers a taste of concrete algebraic geometry. A good deal of space is devoted to cross-ratios, conics, quadrics, and various interesting curves and surfaces. The fundamentals of projective geometry are efficiently dealt with by using a modest amount of linear algebra. An axiomatic characterization of projective planes is also given. While the topology of projective spaces over real and complex fields is described, and while the geometry of the complex projective libe is applied to the study of circles and Möbius transformations, the book is not restricted to these fields. Interesting properties of projective spaces, conics, and quadrics over finite fields are also given. This book is the first volume in the Readings in Mathematics sub-series of the UTM. From the reviews: "...The book of P. Samuel thus fills a gap in the literature. It is a little jewel. Starting from a minimal background in algebra, he succeeds in 160 pages in giving a coherent exposition of all of projective geometry. ... one reads this book like a novel. " D.Lazard in Gazette des Mathématiciens#1

Product Details :

Genre : Mathematics
Author : Pierre Samuel
Publisher : Springer
Release : 1988-09-12
File : 180 Pages
ISBN-13 : UCSC:32106015310342


The New Encyclop Dia Britannica

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Encyclopedias and dictionaries
Author :
Publisher :
Release : 1981
File : 1140 Pages
ISBN-13 : MINN:319510005331962