Practical Automated Machine Learning On Azure

eBook Download

BOOK EXCERPT:

Develop smart applications without spending days and weeks building machine-learning models. With this practical book, you’ll learn how to apply automated machine learning (AutoML), a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide a mix of technical depth, hands-on examples, and case studies that show how customers are solving real-world problems with this technology. Building machine-learning models is an iterative and time-consuming process. Even those who know how to create ML models may be limited in how much they can explore. Once you complete this book, you’ll understand how to apply AutoML to your data right away. Learn how companies in different industries are benefiting from AutoML Get started with AutoML using Azure Explore aspects such as algorithm selection, auto featurization, and hyperparameter tuning Understand how data analysts, BI professions, developers can use AutoML in their familiar tools and experiences Learn how to get started using AutoML for use cases including classification, regression, and forecasting.

Product Details :

Genre : Computers
Author : Deepak Mukunthu
Publisher : O'Reilly Media
Release : 2019-09-23
File : 199 Pages
ISBN-13 : 9781492055563


Azure Machine Learning Engineering

eBook Download

BOOK EXCERPT:

Fully build and productionize end-to-end machine learning solutions using Azure Machine Learning Service Key FeaturesAutomate complete machine learning solutions using Microsoft AzureUnderstand how to productionize machine learning modelsGet to grips with monitoring, MLOps, deep learning, distributed training, and reinforcement learningBook Description Data scientists working on productionizing machine learning (ML) workloads face a breadth of challenges at every step owing to the countless factors involved in getting ML models deployed and running. This book offers solutions to common issues, detailed explanations of essential concepts, and step-by-step instructions to productionize ML workloads using the Azure Machine Learning service. You'll see how data scientists and ML engineers working with Microsoft Azure can train and deploy ML models at scale by putting their knowledge to work with this practical guide. Throughout the book, you'll learn how to train, register, and productionize ML models by making use of the power of the Azure Machine Learning service. You'll get to grips with scoring models in real time and batch, explaining models to earn business trust, mitigating model bias, and developing solutions using an MLOps framework. By the end of this Azure Machine Learning book, you'll be ready to build and deploy end-to-end ML solutions into a production system using the Azure Machine Learning service for real-time scenarios. What you will learnTrain ML models in the Azure Machine Learning serviceBuild end-to-end ML pipelinesHost ML models on real-time scoring endpointsMitigate bias in ML modelsGet the hang of using an MLOps framework to productionize modelsSimplify ML model explainability using the Azure Machine Learning service and Azure InterpretWho this book is for Machine learning engineers and data scientists who want to move to ML engineering roles will find this AMLS book useful. Familiarity with the Azure ecosystem will assist with understanding the concepts covered.

Product Details :

Genre : Computers
Author : Sina Fakhraee
Publisher : Packt Publishing Ltd
Release : 2023-01-20
File : 362 Pages
ISBN-13 : 9781803241685


Automated Machine Learning With Microsoft Azure

eBook Download

BOOK EXCERPT:

A practical, step-by-step guide to using Microsoft's AutoML technology on the Azure Machine Learning service for developers and data scientists working with the Python programming language Key FeaturesCreate, deploy, productionalize, and scale automated machine learning solutions on Microsoft AzureImprove the accuracy of your ML models through automatic data featurization and model trainingIncrease productivity in your organization by using artificial intelligence to solve common problemsBook Description Automated Machine Learning with Microsoft Azure will teach you how to build high-performing, accurate machine learning models in record time. It will equip you with the knowledge and skills to easily harness the power of artificial intelligence and increase the productivity and profitability of your business. Guided user interfaces (GUIs) enable both novices and seasoned data scientists to easily train and deploy machine learning solutions to production. Using a careful, step-by-step approach, this book will teach you how to use Azure AutoML with a GUI as well as the AzureML Python software development kit (SDK). First, you'll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. You'll then discover how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS). Finally, you will be able to use AutoML on your own data to not only train regression, classification, and forecasting models but also use them to solve a wide variety of business problems. By the end of this Azure book, you'll be able to show your business partners exactly how your ML models are making predictions through automatically generated charts and graphs, earning their trust and respect. What you will learnUnderstand how to train classification, regression, and forecasting ML algorithms with Azure AutoMLPrepare data for Azure AutoML to ensure smooth model training and deploymentAdjust AutoML configuration settings to make your models as accurate as possibleDetermine when to use a batch-scoring solution versus a real-time scoring solutionProductionalize your AutoML and discover how to quickly deliver valueCreate real-time scoring solutions with AutoML and Azure Kubernetes ServiceTrain a large number of AutoML models at once using the AzureML Python SDKWho this book is for Data scientists, aspiring data scientists, machine learning engineers, or anyone interested in applying artificial intelligence or machine learning in their business will find this machine learning book useful. You need to have beginner-level knowledge of artificial intelligence and a technical background in computer science, statistics, or information technology before getting started. Familiarity with Python will help you implement the more advanced features found in the chapters, but even data analysts and SQL experts will be able to train ML models after finishing this book.

Product Details :

Genre : Computers
Author : Dennis Michael Sawyers
Publisher : Packt Publishing Ltd
Release : 2021-04-23
File : 340 Pages
ISBN-13 : 9781800561977


Automated Machine Learning

eBook Download

BOOK EXCERPT:

Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key FeaturesGet up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choiceEliminate mundane tasks in data engineering and reduce human errors in machine learning modelsFind out how you can make machine learning accessible for all users to promote decentralized processesBook Description Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What you will learnExplore AutoML fundamentals, underlying methods, and techniquesAssess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenarioFind out the difference between cloud and operations support systems (OSS)Implement AutoML in enterprise cloud to deploy ML models and pipelinesBuild explainable AutoML pipelines with transparencyUnderstand automated feature engineering and time series forecastingAutomate data science modeling tasks to implement ML solutions easily and focus on more complex problemsWho this book is for Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.

Product Details :

Genre : Computers
Author : Adnan Masood
Publisher : Packt Publishing Ltd
Release : 2021-02-18
File : 312 Pages
ISBN-13 : 9781800565524


No Code Ai Concepts And Applications In Machine Learning Visualization And Cloud Platforms

eBook Download

BOOK EXCERPT:

This book is a beginner-friendly guide to artificial intelligence (AI), ideal for those with no technical background. It introduces AI, machine learning, and deep learning basics, focusing on no-code methods for easy understanding. The book also covers data science, data mining, and big data processing, maintaining a no-code approach throughout. Practical applications are explored using no-code platforms like Microsoft Azure Machine Learning and AWS SageMaker. Readers are guided through step-by-step instructions and real-data examples to apply learning algorithms without coding. Additionally, it includes the integration of business intelligence tools like Power BI and AWS QuickSight into machine learning projects.This guide bridges the gap between AI theory and practice, making it a valuable resource for beginners in the field.

Product Details :

Genre : Computers
Author : Minsoo Kang
Publisher : World Scientific
Release : 2024-07-19
File : 403 Pages
ISBN-13 : 9789811293900


Practical Mlops

eBook Download

BOOK EXCERPT:

Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models. Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start. You'll discover how to: Apply DevOps best practices to machine learning Build production machine learning systems and maintain them Monitor, instrument, load-test, and operationalize machine learning systems Choose the correct MLOps tools for a given machine learning task Run machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware

Product Details :

Genre : Computers
Author : Noah Gift
Publisher : "O'Reilly Media, Inc."
Release : 2021-09-14
File : 467 Pages
ISBN-13 : 9781098102968


Ai In Practice

eBook Download

BOOK EXCERPT:

"AI in Practice: Core Concepts and Innovative Applications" provides a comprehensive and accessible exploration of artificial intelligence, designed to equip both novices and enthusiasts with the foundational understanding necessary to navigate this transformative field. Delving into the intricate world of AI, this book meticulously outlines essential principles, from the evolution and types of AI to advanced concepts like neural networks, deep learning, and natural language processing. Each chapter stands as a testament to the profound ways in which AI impacts various sectors, including healthcare, robotics, and beyond, highlighting the technological advances that shape our future. In addition to exploring practical applications, the book addresses critical ethical considerations, ensuring readers gain insights into the responsible deployment of AI technologies. With a focus on the latest tools, frameworks, and emerging trends, "AI in Practice" not only offers a window into the current state of AI but also prepares readers for its future possibilities. Whether for academic study, professional development, or personal interest, this book serves as an essential resource for understanding the complexities and potentials of artificial intelligence in today's world.

Product Details :

Genre : Computers
Author : Robert Johnson
Publisher : HiTeX Press
Release : 2024-10-28
File : 275 Pages
ISBN-13 : PKEY:6610000663613


Mastering Azure Machine Learning

eBook Download

BOOK EXCERPT:

Supercharge and automate your deployments to Azure Machine Learning clusters and Azure Kubernetes Service using Azure Machine Learning services Key Features Implement end-to-end machine learning pipelines on Azure Train deep learning models using Azure compute infrastructure Deploy machine learning models using MLOps Book Description Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logging ML training runs, designing training and deployment pipelines, and managing these pipelines via MLOps. The first section shows you how to set up an Azure Machine Learning workspace; ingest and version datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, you'll discover how to enrich and train ML models for embedding, classification, and regression. You'll explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural networks, recommendation systems, reinforcement learning, and complex distributed ML training techniques - all using Azure Machine Learning. The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative deployment targets. By the end of this book, you'll be able to combine all the steps you've learned by building an MLOps pipeline. What you will learn Understand the end-to-end ML pipeline Get to grips with the Azure Machine Learning workspace Ingest, analyze, and preprocess datasets for ML using the Azure cloud Train traditional and modern ML techniques efficiently using Azure ML Deploy ML models for batch and real-time scoring Understand model interoperability with ONNX Deploy ML models to FPGAs and Azure IoT Edge Build an automated MLOps pipeline using Azure DevOps Who this book is for This book is for machine learning engineers, data scientists, and machine learning developers who want to use the Microsoft Azure cloud to manage their datasets and machine learning experiments and build an enterprise-grade ML architecture using MLOps. This book will also help anyone interested in machine learning to explore important steps of the ML process and use Azure Machine Learning to support them, along with building powerful ML cloud applications. A basic understanding of Python and knowledge of machine learning are recommended.

Product Details :

Genre : Computers
Author : Christoph Korner
Publisher : Packt Publishing Ltd
Release : 2022-05-10
File : 624 Pages
ISBN-13 : 9781803246796


Generative Ai With Microsoft Azure Practical Handbook

eBook Download

BOOK EXCERPT:

"Generative AI with Microsoft Azure" is a comprehensive guide that explores the integration of generative artificial intelligence (AI) with Azure's robust platform, highlighting the transformative potential of AI across various industries. The book is structured into five key parts, each delving into different aspects of generative AI and its applications on Azure. **Part I: Introduction to Generative AI and Microsoft Azure** provides a foundational understanding of generative AI, including its definitions, applications, and the different models like GANs, VAEs, and Transformers. It also introduces Microsoft Azure, guiding readers through setting up an Azure account, and exploring Azure AI and machine learning services. **Part II: Generative Models on Azure** dives into the implementation of specific generative models on Azure. It covers setting up and training Generative Adversarial Networks (GANs), building and deploying Variational Autoencoders (VAEs), and implementing advanced language models like GPT and BERT. This section emphasizes the practical steps and Azure tools necessary for working with these models. **Part III: Advanced Topics and Use Cases** explores specialized applications of generative AI, such as image and video generation, natural language generation (NLG), and conversational agents. It showcases real-world use cases and how Azure services, like Cognitive Services and Bot Service, enhance these applications, offering insights into their implementation and impact. **Part IV: Deployment and Scaling** focuses on the practicalities of deploying generative AI models on Azure. It discusses best practices for deployment, the use of Azure Kubernetes Service (AKS) for container orchestration, and techniques for monitoring and managing models. The section also covers strategies for scaling AI solutions effectively using Azure’s infrastructure, with an emphasis on cost management and optimization. **Part V: Case Studies and Future Trends** presents industry-specific case studies demonstrating the application of generative AI in healthcare, finance, and creative industries. It concludes with a forward-looking perspective on emerging technologies, ethical considerations, and the future trajectory of generative AI on Azure, highlighting the importance of responsible AI practices. Overall, "Generative AI with Microsoft Azure" serves as an essential resource for professionals and enthusiasts looking to leverage Azure's capabilities to harness the power of generative AI, offering practical guidance, real-world applications, and insights into future advancements.

Product Details :

Genre : Computers
Author : Anand Vemula
Publisher : Anand Vemula
Release :
File : 98 Pages
ISBN-13 :


Practical Guide To Azure Cognitive Services

eBook Download

BOOK EXCERPT:

Streamline your complex processes and optimize your organization's operational efficiency, cost-effectiveness, and customer experience by unlocking the potential of Microsoft Azure Cognitive Services and OpenAI Purchase of the print or Kindle book includes a free PDF eBook Key Features Minimize costs and maximize operations by automating mundane activities using AI tools Ideate solutions using real-world examples for manufacturing process improvement with AI Master TCO and ROI analysis for implementing AI solutions, automating operations, and ideating innovative manufacturing solutions with real-world examples Book Description Azure Cognitive Services and OpenAI are a set of pre-built artificial intelligence (AI) solution APIs that can be leveraged from existing applications, allowing customers to take advantage of Microsoft's award-winning Vision, Speech, Text, Decision, and GPT-4 AI capabilities. With Practical Guide to Azure Cognitive Services, you'll work through industry-specific examples of implementations to get a head-start in your production journey. You'll begin with an overview of the categorization of Azure Cognitive Services and the benefits of embracing AI solutions for practical business applications. After that, you'll explore the benefits of using Azure Cognitive Services to optimize efficiency and improve predictive capabilities. Then, you'll learn how to leverage Vision capabilities for quality control, Form Recognizer to streamline supply chain nuances, language understanding to improve customer service, and Cognitive Search for next-generation knowledge-mining solutions. By the end of this book, you'll be able to implement various Cognitive Services solutions that will help you enhance efficiency, reduce costs, and improve the customer experience at your organization. You'll also be well equipped to automate mundane tasks by reaping the full potential of OpenAI. What you will learn Master cost-effective deployment of Azure Cognitive Services Develop proven solutions from an architecture and development standpoint Understand how Cognitive Services are deployed and customized Evaluate various uses of Cognitive Services with different mediums Disseminate Azure costs for Cognitive Services workloads smoothly Deploy next-generation Knowledge Mining solutions with Cognitive Search Explore the current and future journey of OpenAI Understand the value proposition of different AI projects Who this book is for This book is for data scientists, technology leaders, and software engineers looking to implement Azure Cognitive Services with the help of sample use cases derived from success stories. Experience with Python as well as an overall understanding of the Azure Portal with related services such as Azure Data Lake Storage and Azure Functions will help you make the most of this book.

Product Details :

Genre : Computers
Author : Chris Seferlis
Publisher : Packt Publishing Ltd
Release : 2023-05-12
File : 454 Pages
ISBN-13 : 9781801810609