eBook Download
BOOK EXCERPT:
Product Details :
Genre | : |
Author | : Wenmin Wang |
Publisher | : Springer Nature |
Release | : |
File | : 548 Pages |
ISBN-13 | : 9789819753338 |
Download PDF Ebooks Easily, FREE and Latest
WELCOME TO THE LIBRARY!!!
What are you looking for Book "Principles Of Machine Learning" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
Genre | : |
Author | : Wenmin Wang |
Publisher | : Springer Nature |
Release | : |
File | : 548 Pages |
ISBN-13 | : 9789819753338 |
This volume constitutes the papers of several workshops which were held in conjunction with the International Workshops of ECML PKDD 2022 on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022, held in Grenoble, France, during September 19–23, 2022. The 73 revised full papers and 6 short papers presented in this book were carefully reviewed and selected from 143 submissions. ECML PKDD 2022 presents the following five workshops: Workshop on Data Science for Social Good (SoGood 2022) Workshop on New Frontiers in Mining Complex Patterns (NFMCP 2022) Workshop on Explainable Knowledge Discovery in Data Mining (XKDD 2022) Workshop on Uplift Modeling (UMOD 2022) Workshop on IoT, Edge and Mobile for Embedded Machine Learning (ITEM 2022) Workshop on Mining Data for Financial Application (MIDAS 2022) Workshop on Machine Learning for Cybersecurity (MLCS 2022) Workshop on Machine Learning for Buildings Energy Management (MLBEM 2022) Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2022) Workshop on Data Analysis in Life Science (DALS 2022) Workshop on IoT Streams for Predictive Maintenance (IoT-PdM 2022)
Genre | : Computers |
Author | : Irena Koprinska |
Publisher | : Springer Nature |
Release | : 2023-01-30 |
File | : 499 Pages |
ISBN-13 | : 9783031236334 |
This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops:Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021)Workshop on Parallel, Distributed and Federated Learning (PDFL 2021)Workshop on Graph Embedding and Mining (GEM 2021)Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021)Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021)Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021)Workshop on Bias and Fairness in AI (BIAS 2021)Workshop on Workshop on Active Inference (IWAI 2021)Workshop on Machine Learning for Cybersecurity (MLCS 2021)Workshop on Machine Learning in Software Engineering (MLiSE 2021)Workshop on MIning Data for financial applications (MIDAS 2021)Sixth Workshop on Data Science for Social Good (SoGood 2021)Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021)Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020)Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021)
Genre | : Computers |
Author | : Michael Kamp |
Publisher | : Springer Nature |
Release | : 2022-02-17 |
File | : 895 Pages |
ISBN-13 | : 9783030937362 |
Thwart hackers by preventing, detecting, and misdirecting access before they can plant malware, obtain credentials, engage in fraud, modify data, poison models, corrupt users, eavesdrop, and otherwise ruin your day Key Features Discover how hackers rely on misdirection and deep fakes to fool even the best security systems Retain the usefulness of your data by detecting unwanted and invalid modifications Develop application code to meet the security requirements related to machine learning Book DescriptionBusinesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning. As you progress to the second part, you’ll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references. The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary’s reputation. Once you’ve understood hacker goals and detection techniques, you’ll learn about the ramifications of deep fakes, followed by mitigation strategies. This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You’ll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks. By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively.What you will learn Explore methods to detect and prevent illegal access to your system Implement detection techniques when access does occur Employ machine learning techniques to determine motivations Mitigate hacker access once security is breached Perform statistical measurement and behavior analysis Repair damage to your data and applications Use ethical data collection methods to reduce security risks Who this book is forWhether you’re a data scientist, researcher, or manager working with machine learning techniques in any aspect, this security book is a must-have. While most resources available on this topic are written in a language more suitable for experts, this guide presents security in an easy-to-understand way, employing a host of diagrams to explain concepts to visual learners. While familiarity with machine learning concepts is assumed, knowledge of Python and programming in general will be useful.
Genre | : Computers |
Author | : John Paul Mueller |
Publisher | : Packt Publishing Ltd |
Release | : 2022-12-30 |
File | : 450 Pages |
ISBN-13 | : 9781804615409 |
This book introduces the basic principles and implementation process of deep learning in a simple way, and uses python's numpy library to build its own deep learning library from scratch instead of using existing deep learning libraries. On the basis of introducing basic knowledge of Python programming, calculus, and probability statistics, the core basic knowledge of deep learning such as regression model, neural network, convolutional neural network, recurrent neural network, and generative network is introduced in sequence according to the development of deep learning. While analyzing the principle in a simple way, it provides a detailed code implementation process. It is like not teaching you how to use weapons and mobile phones, but teaching you how to make weapons and mobile phones by yourself. This book is not a tutorial on the use of existing deep learning libraries, but an analysis of how to develop deep learning libraries from 0. This method of combining the principle from 0 with code implementation can enable readers to better understand the basic principles of deep learning and the design ideas of popular deep learning libraries.
Genre | : Computers |
Author | : Hongwei Dong |
Publisher | : hwdong |
Release | : 2023-05-08 |
File | : 606 Pages |
ISBN-13 | : |
This book discusses Artificial Neural Networks (ANN) and their ability to predict outcomes using deep and shallow learning principles. The author first describes ANN implementation, consisting of at least three layers that must be established together with cells, one of which is input, the other is output, and the third is a hidden (intermediate) layer. For this, the author states, it is necessary to develop an architecture that will not model mathematical rules but only the action and response variables that control the event and the reactions that may occur within it. The book explains the reasons and necessity of each ANN model, considering the similarity to the previous methods and the philosophical - logical rules.
Genre | : Technology & Engineering |
Author | : Zekâi Şen |
Publisher | : Springer Nature |
Release | : 2023-06-01 |
File | : 678 Pages |
ISBN-13 | : 9783031295553 |
Artificial Intelligence (AI) and Machine Learning (ML) are transforming industries, revolutionizing how businesses make decisions, automate processes, and provide innovative products and services. Yet, the successful implementation of AI and ML goes beyond developing sophisticated models. It requires the seamless integration of these models into operational workflows, ensuring their reliability, scalability, security, and ethical compliance. This integration is the heart of Machine Learning Operations or MLOps. This comprehensive guide is your passport to understanding the intricate world of MLOps. Whether you are an aspiring data scientist, a seasoned machine learning engineer, an operations professional, or a business leader, this guide is designed to equip you with the knowledge and insights needed to navigate the complexities of MLOps effectively.
Genre | : Computers |
Author | : Rick Spair |
Publisher | : Rick Spair |
Release | : |
File | : 98 Pages |
ISBN-13 | : |
The field of Artificial Neural Networks is the fastest growing field in Information Technology and specifically, in Artificial Intelligence and Machine Learning.This must-have compendium presents the theory and case studies of artificial neural networks. The volume, with 4 new chapters, updates the earlier edition by highlighting recent developments in Deep-Learning Neural Networks, which are the recent leading approaches to neural networks. Uniquely, the book also includes case studies of applications of neural networks — demonstrating how such case studies are designed, executed and how their results are obtained.The title is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.
Genre | : Computers |
Author | : Daniel Graupe |
Publisher | : World Scientific |
Release | : 2019-03-15 |
File | : 439 Pages |
ISBN-13 | : 9789811201240 |
"Practical AI Ethics: Integrating Ethical Principles into Machine Learning Projects" is an essential resource for AI professionals, policymakers, and academics dedicated to embedding ethical practices within the rapidly evolving field of machine learning. This comprehensive guide tackles some of the most pressing ethical challenges, including transparency, bias, privacy, fairness, and compliance, offering clear and actionable strategies for addressing these issues in AI systems. Written in a practical and solution-oriented style, the book simplifies complex ethical concepts, providing readers with advanced tools, practical frameworks, and insightful case studies to guide the ethical integration of AI in real-world projects. From minimizing the environmental impact of AI to safeguarding human rights and navigating regulatory landscapes, this book equips readers to take on the ethical challenges of AI with confidence. By engaging with *"Practical AI Ethics: Integrating Ethical Principles into Machine Learning Projects,"* readers will gain the knowledge and skills to lead the charge in promoting fairness, accountability, and transparency in AI. It is a must-read for anyone committed to shaping a responsible, ethical future for AI innovation.
Genre | : Computers |
Author | : Peter Jones |
Publisher | : Walzone Press |
Release | : 2024-10-11 |
File | : 186 Pages |
ISBN-13 | : |
Data mining is often referred to by real-time users and software solutions providers as knowledge discovery in databases (KDD). Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. This book has been written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining.Suitable for advanced undergraduates and their tutors at postgraduate level in a wide area of computer science and technology topics as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to the libraries and bookshelves of the many companies who are using the principles of data mining (or KDD) to effectively deliver solid business and industry solutions. - Provides an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining - A valuable addition to the libraries and bookshelves of companies using the principles of data mining (or KDD) to effectively deliver solid business and industry solutions
Genre | : Computers |
Author | : Igor Kononenko |
Publisher | : Elsevier |
Release | : 2007-04-30 |
File | : 475 Pages |
ISBN-13 | : 9780857099440 |