Quantum Machine Learning

eBook Download

BOOK EXCERPT:

This book presents a new way of thinking about quantum mechanics and machine learning by merging the two. Quantum mechanics and machine learning may seem theoretically disparate, but their link becomes clear through the density matrix operator which can be readily approximated by neural network models, permitting a formulation of quantum physics in which physical observables can be computed via neural networks. As well as demonstrating the natural affinity of quantum physics and machine learning, this viewpoint opens rich possibilities in terms of computation, efficient hardware, and scalability. One can also obtain trainable models to optimize applications and fine-tune theories, such as approximation of the ground state in many body systems, and boosting quantum circuits’ performance. The book begins with the introduction of programming tools and basic concepts of machine learning, with necessary background material from quantum mechanics and quantum information also provided. This enables the basic building blocks, neural network models for vacuum states, to be introduced. The highlights that follow include: non-classical state representations, with squeezers and beam splitters used to implement the primary layers for quantum computing; boson sampling with neural network models; an overview of available quantum computing platforms, their models, and their programming; and neural network models as a variational ansatz for many-body Hamiltonian ground states with applications to Ising machines and solitons. The book emphasizes coding, with many open source examples in Python and TensorFlow, while MATLAB and Mathematica routines clarify and validate proofs. This book is essential reading for graduate students and researchers who want to develop both the requisite physics and coding knowledge to understand the rich interplay of quantum mechanics and machine learning.

Product Details :

Genre : Science
Author : Claudio Conti
Publisher : Springer Nature
Release : 2024-01-28
File : 393 Pages
ISBN-13 : 9783031442261


Quantum Machine Learning

eBook Download

BOOK EXCERPT:

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Product Details :

Genre : Science
Author : Peter Wittek
Publisher : Academic Press
Release : 2014-09-10
File : 176 Pages
ISBN-13 : 9780128010990


Quantum Machine Learning

eBook Download

BOOK EXCERPT:

Quantum computing has shown a potential to tackle specific types of problems, especially those involving a daunting number of variables, at an exponentially faster rate compared to classical computers. This volume focuses on quantum variants of machine learning algorithms, such as quantum neural networks, quantum reinforcement learning, quantum principal component analysis, quantum support vectors, quantum Boltzmann machines, and many more.

Product Details :

Genre : Computers
Author : Pethuru Raj
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2024-08-05
File : 412 Pages
ISBN-13 : 9783111342597


Quantum Machine Learning

eBook Download

BOOK EXCERPT:

This book presents the research into and application of machine learning in quantum computation, known as quantum machine learning (QML). It presents a comparison of quantum machine learning, classical machine learning, and traditional programming, along with the usage of quantum computing, toward improving traditional machine learning algorithms through case studies. In summary, the book: Covers the core and fundamental aspects of statistics, quantum learning, and quantum machines. Discusses the basics of machine learning, regression, supervised and unsupervised machine learning algorithms, and artificial neural networks. Elaborates upon quantum machine learning models, quantum machine learning approaches and quantum classification, and boosting. Introduces quantum evaluation models, deep quantum learning, ensembles, and QBoost. Presents case studies to demonstrate the efficiency of quantum mechanics in industrial aspects. This reference text is primarily written for scholars and researchers working in the fields of computer science and engineering, information technology, electrical engineering, and electronics and communication engineering.

Product Details :

Genre : Computers
Author : S Karthikeyan
Publisher : CRC Press
Release : 2024-10-28
File : 300 Pages
ISBN-13 : 9781040116104


Quantum Machine Learning

eBook Download

BOOK EXCERPT:

Quantum-enhanced machine learning refers to quantum algorithms that solve tasks in machine learning, thereby improving a classical machine learning method. Such algorithms typically require one to encode the given classical dataset into a quantum computer, so as to make it accessible for quantum information processing. After this, quantum information processing routines can be applied and the result of the quantum computation is read out by measuring the quantum system. While many proposals of quantum machine learning algorithms are still purely theoretical and require a full-scale universal quantum computer to be tested, others have been implemented on small-scale or special purpose quantum devices.

Product Details :

Genre : Computers
Author : Siddhartha Bhattacharyya
Publisher : Walter de Gruyter GmbH & Co KG
Release : 2020-06-08
File : 134 Pages
ISBN-13 : 9783110670707


Concise Guide To Quantum Machine Learning

eBook Download

BOOK EXCERPT:

This book offers a brief but effective introduction to quantum machine learning (QML). QML is not merely a translation of classical machine learning techniques into the language of quantum computing, but rather a new approach to data representation and processing. Accordingly, the content is not divided into a “classical part” that describes standard machine learning schemes and a “quantum part” that addresses their quantum counterparts. Instead, to immerse the reader in the quantum realm from the outset, the book starts from fundamental notions of quantum mechanics and quantum computing. Avoiding unnecessary details, it presents the concepts and mathematical tools that are essential for the required quantum formalism. In turn, it reviews those quantum algorithms most relevant to machine learning. Later chapters highlight the latest advances in this field and discuss the most promising directions for future research. To gain the most from this book, a basic grasp of statistics and linear algebra is sufficient; no previous experience with quantum computing or machine learning is needed. The book is aimed at researchers and students with no background in quantum physics and is also suitable for physicists looking to enter the field of QML.

Product Details :

Genre : Computers
Author : Davide Pastorello
Publisher : Springer Nature
Release : 2022-12-16
File : 144 Pages
ISBN-13 : 9789811968976


Ai Foundations Of Quantum Machine Learning

eBook Download

BOOK EXCERPT:

Dive into the cutting-edge intersection of quantum computing and machine learning with "AI Foundations of Quantum Machine Learning." This comprehensive guide invites readers into the exciting world where the realms of artificial intelligence (AI) and quantum mechanics merge, setting the stage for a revolution in AI technologies. With the burgeoning interest in quantum computing's vast potential, this book serves as a beacon, illuminating the intricate concepts and groundbreaking promises of quantum machine learning. Contents Quantum Computing: An Introduction - Begin your journey with a primer on quantum computing, understanding the fundamental quantum mechanics that power advanced data processing. Fundamentals of Machine Learning - Lay the groundwork with an overview of machine learning principles, setting the stage for their quantum leap. Quantum Algorithms for Machine Learning - Discover the transformative potential of quantum algorithms, capable of processing large datasets with unprecedented speed and efficiency. Data Encoding in Quantum Systems - Explore the innovative techniques for encoding data into quantum systems, a crucial step for quantum machine learning. Quantum Machine Learning Models - Delve into the heart of quantum machine learning, examining models that harness quantum mechanics to enhance machine learning capabilities. Training Quantum Neural Networks - Unpack the methodologies for training quantum neural networks, a pioneering approach to AI development. Applications of Quantum Machine Learning - Witness the practical implications of quantum machine learning across various fields, from healthcare to environmental science. Challenges and the Future Landscape - Reflect on the hurdles facing quantum machine learning and envision the future of AI shaped by quantum advancements. Introduction "AI Foundations of Quantum Machine Learning" offers a compelling narrative on the symbiosis of quantum computing and machine learning. Through accessible language and vivid examples, it demystifies complex concepts and showcases the transformative power of quantum technologies in AI. Readers are taken on an enlightening journey, from the basic principles of quantum computing to the forefront of quantum machine learning models and their applications. This book is not merely an academic text; it is a roadmap to the future, encouraging readers to envision a world where AI is redefined by quantum phenomena. Ideal for students, academics, and tech enthusiasts alike, this book bridges the gap between theoretical quantum mechanics and practical machine learning applications. Whether you're looking to understand the basics or explore the future of technology, "AI Foundations of Quantum Machine Learning" is an indispensable resource for anyone eager to grasp the next wave of technological innovation.

Product Details :

Genre : Computers
Author : Jon Adams
Publisher : Green Mountain Computing
Release :
File : 157 Pages
ISBN-13 :


Quantum Machine Learning And Optimisation In Finance

eBook Download

BOOK EXCERPT:

Learn the principles of quantum machine learning and how to apply them While focus is on financial use cases, all the methods and techniques are transferable to other fields Purchase of Print or Kindle includes a free eBook in PDF Key Features Discover how to solve optimisation problems on quantum computers that can provide a speedup edge over classical methods Use methods of analogue and digital quantum computing to build powerful generative models Create the latest algorithms that work on Noisy Intermediate-Scale Quantum (NISQ) computers Book Description With recent advances in quantum computing technology, we finally reached the era of Noisy Intermediate-Scale Quantum (NISQ) computing. NISQ-era quantum computers are powerful enough to test quantum computing algorithms and solve hard real-world problems faster than classical hardware. Speedup is so important in financial applications, ranging from analysing huge amounts of customer data to high frequency trading. This is where quantum computing can give you the edge. Quantum Machine Learning and Optimisation in Finance shows you how to create hybrid quantum-classical machine learning and optimisation models that can harness the power of NISQ hardware. This book will take you through the real-world productive applications of quantum computing. The book explores the main quantum computing algorithms implementable on existing NISQ devices and highlights a range of financial applications that can benefit from this new quantum computing paradigm. This book will help you be one of the first in the finance industry to use quantum machine learning models to solve classically hard real-world problems. We may have moved past the point of quantum computing supremacy, but our quest for establishing quantum computing advantage has just begun! What you will learn Train parameterised quantum circuits as generative models that excel on NISQ hardware Solve hard optimisation problems Apply quantum boosting to financial applications Learn how the variational quantum eigensolver and the quantum approximate optimisation algorithms work Analyse the latest algorithms from quantum kernels to quantum semidefinite programming Apply quantum neural networks to credit approvals Who this book is for This book is for Quants and developers, data scientists, researchers, and students in quantitative finance. Although the focus is on financial use cases, all the methods and techniques are transferable to other areas.

Product Details :

Genre : Mathematics
Author : Antoine Jacquier
Publisher : Packt Publishing Ltd
Release : 2022-10-31
File : 443 Pages
ISBN-13 : 9781801817875


A Practical Guide To Quantum Machine Learning And Quantum Optimization

eBook Download

BOOK EXCERPT:

Work with fully explained algorithms and ready-to-use examples that can be run on quantum simulators and actual quantum computers with this comprehensive guide Key FeaturesGet a solid grasp of the principles behind quantum algorithms and optimization with minimal mathematical prerequisitesLearn the process of implementing the algorithms on simulators and actual quantum computersSolve real-world problems using practical examples of methodsBook Description This book provides deep coverage of modern quantum algorithms that can be used to solve real-world problems. You'll be introduced to quantum computing using a hands-on approach with minimal prerequisites. You'll discover many algorithms, tools, and methods to model optimization problems with the QUBO and Ising formalisms, and you will find out how to solve optimization problems with quantum annealing, QAOA, Grover Adaptive Search (GAS), and VQE. This book also shows you how to train quantum machine learning models, such as quantum support vector machines, quantum neural networks, and quantum generative adversarial networks. The book takes a straightforward path to help you learn about quantum algorithms, illustrating them with code that's ready to be run on quantum simulators and actual quantum computers. You'll also learn how to utilize programming frameworks such as IBM's Qiskit, Xanadu's PennyLane, and D-Wave's Leap. Through reading this book, you will not only build a solid foundation of the fundamentals of quantum computing, but you will also become familiar with a wide variety of modern quantum algorithms. Moreover, this book will give you the programming skills that will enable you to start applying quantum methods to solve practical problems right away. What you will learnReview the basics of quantum computingGain a solid understanding of modern quantum algorithmsUnderstand how to formulate optimization problems with QUBOSolve optimization problems with quantum annealing, QAOA, GAS, and VQEFind out how to create quantum machine learning modelsExplore how quantum support vector machines and quantum neural networks work using Qiskit and PennyLaneDiscover how to implement hybrid architectures using Qiskit and PennyLane and its PyTorch interfaceWho this book is for This book is for professionals from a wide variety of backgrounds, including computer scientists and programmers, engineers, physicists, chemists, and mathematicians. Basic knowledge of linear algebra and some programming skills (for instance, in Python) are assumed, although all mathematical prerequisites will be covered in the appendices.

Product Details :

Genre : Computers
Author : Elias F. Combarro
Publisher : Packt Publishing Ltd
Release : 2023-03-31
File : 680 Pages
ISBN-13 : 9781804618301


Quantum Machine Learning With Quantum Cheshire Cat Generative Ai Model Quantum Mirage Data

eBook Download

BOOK EXCERPT:

The book introduced the concepts of Quantum Mirage Data and explained the details of a new model for Quantum Machine Learning using the concepts of Quantum Cheshire Cat phenomenon and Quantum Generative Adversarial Networks. In our Compassionate AI Lab, we conducted numerous experiments utilizing various datasets, and we observed significant enhancements in performance across multiple domains when compared to alternative models. Quantum Machine Learning with Quantum Cheshire Cat (QML-QCC) represents a significant advancement in the field of quantum machine learning, combining the fascinating Quantum Cheshire Cat phenomenon with Generative Adversarial Networks (GANs) in a seamless manner. This book presents a new era of machine learning by introducing the ground-breaking concept of Quantum Mirage Data. This innovative framework is designed to address key challenges in quantum computing, such as qubit decoherence, error correction, and scalability, while also incorporating machine learning capabilities to enhance the generation of quantum data and generative learning.

Product Details :

Genre : Computers
Author : Sri Amit Ray
Publisher : Compassionate AI Lab
Release : 2024-01-05
File : 166 Pages
ISBN-13 : 9789382123576