Symplectic Invariants And Hamiltonian Dynamics

eBook Download

BOOK EXCERPT:

The discoveries of the last decades have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic mappings is very different from that of volume preserving mappings. This raises new questions, many of them still unanswered. On the other hand, analysis of an old variational principle in classical mechanics has established global periodic phenomena in Hamiltonian systems. As it turns out, these seemingly different phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book, which includes such topics as basic symplectic geometry, symplectic capacities and rigidity, periodic orbits for Hamiltonian systems and the action principle, a bi-invariant metric on the symplectic diffeomorphism group and its geometry, symplectic fixed point theory, the Arnold conjectures and first order elliptic systems, and finally a survey on Floer homology and symplectic homology. The exposition is self-contained and addressed to researchers and students from the graduate level onwards.

Product Details :

Genre : Mathematics
Author : Helmut Hofer
Publisher : Springer Science & Business Media
Release : 2011-03-31
File : 353 Pages
ISBN-13 : 9783034801041


Symplectic Invariants And Hamiltonian Dynamics

eBook Download

BOOK EXCERPT:

Analysis of an old variational principal in classical mechanics has established global periodic phenomena in Hamiltonian systems. One of the links is a class of sympletic invariants, called sympletic capacities, and these invariants are the main theme of this book. Topics covered include basic sympletic geometry, sympletic capacities and rigidity, sympletic fixed point theory, and a survey on Floer homology and sympletic homology.

Product Details :

Genre : Mathematics
Author : Helmut Hofer
Publisher : Birkhäuser
Release : 2012-12-06
File : 356 Pages
ISBN-13 : 9783034885409


The Breadth Of Symplectic And Poisson Geometry

eBook Download

BOOK EXCERPT:

* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics

Product Details :

Genre : Mathematics
Author : Jerrold E. Marsden
Publisher : Springer Science & Business Media
Release : 2007-07-03
File : 666 Pages
ISBN-13 : 9780817644192


Spectral Invariants With Bulk Quasi Morphisms And Lagrangian Floer Theory

eBook Download

BOOK EXCERPT:

In this paper the authors first develop various enhancements of the theory of spectral invariants of Hamiltonian Floer homology and of Entov-Polterovich theory of spectral symplectic quasi-states and quasi-morphisms by incorporating bulk deformations, i.e., deformations by ambient cycles of symplectic manifolds, of the Floer homology and quantum cohomology. Essentially the same kind of construction is independently carried out by Usher in a slightly less general context. Then the authors explore various applications of these enhancements to the symplectic topology, especially new construction of symplectic quasi-states, quasi-morphisms and new Lagrangian intersection results on toric and non-toric manifolds. The most novel part of this paper is its use of open-closed Gromov-Witten-Floer theory and its variant involving closed orbits of periodic Hamiltonian system to connect spectral invariants (with bulk deformation), symplectic quasi-states, quasi-morphism to the Lagrangian Floer theory (with bulk deformation). The authors use this open-closed Gromov-Witten-Floer theory to produce new examples. Using the calculation of Lagrangian Floer cohomology with bulk, they produce examples of compact symplectic manifolds which admits uncountably many independent quasi-morphisms . They also obtain a new intersection result for the Lagrangian submanifold in .

Product Details :

Genre : Mathematics
Author : Kenji Fukaya
Publisher : American Mathematical Soc.
Release : 2019-09-05
File : 282 Pages
ISBN-13 : 9781470436254


The Floer Memorial Volume

eBook Download

BOOK EXCERPT:

Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a collection of invited contributions, and survey articles as well as research papers on his fields of interest, bearing testimony of the high esteem and appreciation this brilliant mathematician enjoyed among his colleagues. Authors include: A. Floer, V.I. Arnold, M. Atiyah, M. Audin, D.M. Austin, S.M. Bates, P.J. Braam, M. Chaperon, R.L. Cohen, G. Dell' Antonio, S.K. Donaldson, B. D'Onofrio, I. Ekeland, Y. Eliashberg, K.D. Ernst, R. Finthushel, A.B. Givental, H. Hofer, J.D.S. Jones, I. McAllister, D. McDuff, Y.-G. Oh, L. Polterovich, D.A. Salamon, G.B. Segal, R. Stern, C.H. Taubes, C. Viterbo, A. Weinstein, E. Witten, E. Zehnder.

Product Details :

Genre : Mathematics
Author : Helmut Hofer
Publisher : Birkhäuser
Release : 2012-12-06
File : 688 Pages
ISBN-13 : 9783034892179


Symplectic Topology And Measure Preserving Dynamical Systems

eBook Download

BOOK EXCERPT:

The papers in this volume were presented at the AMS-IMS-SIAM Joint Summer Research Conference on Symplectic Topology and Measure Preserving Dynamical Systems held in Snowbird, Utah in July 2007. The aim of the conference was to bring together specialists of symplectic topology and of measure preserving dynamics to try to connect these two subjects. One of the motivating conjectures at the interface of these two fields is the question of whether the group of area preserving homeomorphisms of the 2-disc is or is not simple. For diffeomorphisms it was known that the kernel of the Calabi invariant is a normal proper subgroup, so the group of area preserving diffeomorphisms is not simple. Most articles are related to understanding these and related questions in the framework of modern symplectic topology.

Product Details :

Genre : Mathematics
Author : Albert Fathi
Publisher : American Mathematical Soc.
Release : 2010-04-09
File : 192 Pages
ISBN-13 : 9780821848920


Symplectic Geometry

eBook Download

BOOK EXCERPT:

Over the course of his distinguished career, Claude Viterbo has made a number of groundbreaking contributions in the development of symplectic geometry/topology and Hamiltonian dynamics. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.

Product Details :

Genre : Mathematics
Author : Helmut Hofer
Publisher : Springer Nature
Release : 2022-12-05
File : 1158 Pages
ISBN-13 : 9783031191114


Elementary Symplectic Topology And Mechanics

eBook Download

BOOK EXCERPT:

This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincaré's last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.

Product Details :

Genre : Science
Author : Franco Cardin
Publisher : Springer
Release : 2014-12-01
File : 237 Pages
ISBN-13 : 9783319110264


Arithmetic Theory Of Elliptic Curves

eBook Download

BOOK EXCERPT:

This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.

Product Details :

Genre : Mathematics
Author : J. Coates
Publisher : Springer
Release : 2006-11-14
File : 269 Pages
ISBN-13 : 9783540481607


Stochastic Pde S And Kolmogorov Equations In Infinite Dimensions

eBook Download

BOOK EXCERPT:

Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dimensional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Röckner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results.

Product Details :

Genre : Mathematics
Author : N.V. Krylov
Publisher : Springer
Release : 2006-11-15
File : 248 Pages
ISBN-13 : 9783540481614