Synthetic Data For Deep Learning

eBook Download

BOOK EXCERPT:

This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field. In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs. The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.

Product Details :

Genre : Computers
Author : Sergey I. Nikolenko
Publisher : Springer Nature
Release : 2021-06-26
File : 348 Pages
ISBN-13 : 9783030751784


Synthetic Data For Machine Learning

eBook Download

BOOK EXCERPT:

Conquer data hurdles, supercharge your ML journey, and become a leader in your field with synthetic data generation techniques, best practices, and case studies Key Features Avoid common data issues by identifying and solving them using synthetic data-based solutions Master synthetic data generation approaches to prepare for the future of machine learning Enhance performance, reduce budget, and stand out from competitors using synthetic data Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe machine learning (ML) revolution has made our world unimaginable without its products and services. However, training ML models requires vast datasets, which entails a process plagued by high costs, errors, and privacy concerns associated with collecting and annotating real data. Synthetic data emerges as a promising solution to all these challenges. This book is designed to bridge theory and practice of using synthetic data, offering invaluable support for your ML journey. Synthetic Data for Machine Learning empowers you to tackle real data issues, enhance your ML models' performance, and gain a deep understanding of synthetic data generation. You’ll explore the strengths and weaknesses of various approaches, gaining practical knowledge with hands-on examples of modern methods, including Generative Adversarial Networks (GANs) and diffusion models. Additionally, you’ll uncover the secrets and best practices to harness the full potential of synthetic data. By the end of this book, you’ll have mastered synthetic data and positioned yourself as a market leader, ready for more advanced, cost-effective, and higher-quality data sources, setting you ahead of your peers in the next generation of ML.What you will learn Understand real data problems, limitations, drawbacks, and pitfalls Harness the potential of synthetic data for data-hungry ML models Discover state-of-the-art synthetic data generation approaches and solutions Uncover synthetic data potential by working on diverse case studies Understand synthetic data challenges and emerging research topics Apply synthetic data to your ML projects successfully Who this book is forIf you are a machine learning (ML) practitioner or researcher who wants to overcome data problems, this book is for you. Basic knowledge of ML and Python programming is required. The book is one of the pioneer works on the subject, providing leading-edge support for ML engineers, researchers, companies, and decision makers.

Product Details :

Genre : Computers
Author : Abdulrahman Kerim
Publisher : Packt Publishing Ltd
Release : 2023-10-27
File : 209 Pages
ISBN-13 : 9781803232607


Synthetic Data Generation

eBook Download

BOOK EXCERPT:

"Synthetic Data Generation: A Beginner’s Guide" offers an insightful exploration into the emerging field of synthetic data, essential for anyone navigating the complexities of data science, artificial intelligence, and technology innovation. This comprehensive guide demystifies synthetic data, presenting a detailed examination of its core principles, techniques, and prospective applications across diverse industries. Designed with accessibility in mind, it equips beginners and seasoned practitioners alike with the necessary knowledge to leverage synthetic data's potential effectively. Delving into the nuances of data sources, generation techniques, and evaluation metrics, this book serves as a practical roadmap for mastering synthetic data. Readers will gain a robust understanding of the advantages and limitations, ethical considerations, and privacy concerns associated with synthetic data usage. Through real-world examples and industry insights, the guide illuminates the transformative role of synthetic data in enhancing innovation while safeguarding privacy. With an eye on both present applications and future trends, "Synthetic Data Generation: A Beginner’s Guide" prepares readers to engage with the evolving challenges and opportunities in data-centric fields. Whether for academic enrichment, professional development, or as a primer for new data enthusiasts, this book stands as an essential resource in understanding and implementing synthetic data solutions.

Product Details :

Genre : Computers
Author : Robert Johnson
Publisher : HiTeX Press
Release : 2024-10-27
File : 214 Pages
ISBN-13 : PKEY:6610000663309


Practical Synthetic Data Generation

eBook Download

BOOK EXCERPT:

Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic data—fake data generated from real data—so you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new revenue. Data scientists will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps for generating synthetic data from real datasets. And business leaders will see how synthetic data can help accelerate time to a product or solution. This book describes: Steps for generating synthetic data using multivariate normal distributions Methods for distribution fitting covering different goodness-of-fit metrics How to replicate the simple structure of original data An approach for modeling data structure to consider complex relationships Multiple approaches and metrics you can use to assess data utility How analysis performed on real data can be replicated with synthetic data Privacy implications of synthetic data and methods to assess identity disclosure

Product Details :

Genre : Computers
Author : Khaled El Emam
Publisher : O'Reilly Media
Release : 2020-05-19
File : 166 Pages
ISBN-13 : 9781492072713


Privacy In Statistical Databases

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Josep Domingo-Ferrer
Publisher : Springer Nature
Release :
File : 434 Pages
ISBN-13 : 9783031696510


Generative Artificial Intelligence In Finance

eBook Download

BOOK EXCERPT:

In recent years, technological advances and competitive pressures have fueled rapid adoption of artificial intelligence (AI) in the financial sector, and this adoption is set to accelerate with the recent emergence of generative AI (GenAI). GenAI is a significant leap forward in AI technology that enhances its utility for financial institutions that have been quick at adapting it to a broad range of applications. However, there are risks inherent in the AI technology and its application in the financial sector, including embedded bias, privacy concerns, outcome opaqueness, performance robustness, unique cyberthreats, and the potential for creating new sources and transmission channels of systemic risks. GenAI could aggravate some of these risks and bring about new types or risks as well, including for financial sector stability. This paper provides early insights into GenAI’s inherent risks and their potential impact on the financial sector.

Product Details :

Genre : Business & Economics
Author : Mr. Ghiath Shabsigh
Publisher : International Monetary Fund
Release : 2023-08-22
File : 24 Pages
ISBN-13 : 9798400251092


Biocomputing 2024 Proceedings Of The Pacific Symposium

eBook Download

BOOK EXCERPT:

The Pacific Symposium on Biocomputing (PSB) 2024 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2024 will be held on January 3 - 7, 2024 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2024 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field.

Product Details :

Genre : Science
Author : Russ B Altman
Publisher : World Scientific
Release : 2023-12-18
File : 685 Pages
ISBN-13 : 9789811286438


Soft Computing And Signal Processing

eBook Download

BOOK EXCERPT:

This book presents selected research papers on current developments in the fields of soft computing and signal processing from the Fourth International Conference on Soft Computing and Signal Processing (ICSCSP 2021). The book covers topics such as soft sets, rough sets, fuzzy logic, neural networks, genetic algorithms and machine learning and discusses various aspects of these topics, e.g., technological considerations, product implementation and application issues.

Product Details :

Genre : Technology & Engineering
Author : V. Sivakumar Reddy
Publisher : Springer Nature
Release : 2022-02-15
File : 793 Pages
ISBN-13 : 9789811670886


Privacy Preserving Machine Learning

eBook Download

BOOK EXCERPT:

Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy-Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You’ll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you’re done reading, you’ll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning applications need massive amounts of data. It’s up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you’ll need to secure your data pipelines end to end. About the Book Privacy-Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You’ll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you’ll develop in the final chapter. What’s Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Author J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Table of Contents PART 1 - BASICS OF PRIVACY-PRESERVING MACHINE LEARNING WITH DIFFERENTIAL PRIVACY 1 Privacy considerations in machine learning 2 Differential privacy for machine learning 3 Advanced concepts of differential privacy for machine learning PART 2 - LOCAL DIFFERENTIAL PRIVACY AND SYNTHETIC DATA GENERATION 4 Local differential privacy for machine learning 5 Advanced LDP mechanisms for machine learning 6 Privacy-preserving synthetic data generation PART 3 - BUILDING PRIVACY-ASSURED MACHINE LEARNING APPLICATIONS 7 Privacy-preserving data mining techniques 8 Privacy-preserving data management and operations 9 Compressive privacy for machine learning 10 Putting it all together: Designing a privacy-enhanced platform (DataHub)

Product Details :

Genre : Computers
Author : J. Morris Chang
Publisher : Simon and Schuster
Release : 2023-05-02
File : 334 Pages
ISBN-13 : 9781617298042


Practicing Trustworthy Machine Learning

eBook Download

BOOK EXCERPT:

With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. Many books on the subject offer deep dives into theories and concepts. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable. Authors Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar translate best practices in the academic literature for curating datasets and building models into a blueprint for building industry-grade trusted ML systems. With this book, engineers and data scientists will gain a much-needed foundation for releasing trustworthy ML applications into a noisy, messy, and often hostile world. You'll learn: Methods to explain ML models and their outputs to stakeholders How to recognize and fix fairness concerns and privacy leaks in an ML pipeline How to develop ML systems that are robust and secure against malicious attacks Important systemic considerations, like how to manage trust debt and which ML obstacles require human intervention

Product Details :

Genre : Computers
Author : Yada Pruksachatkun
Publisher : "O'Reilly Media, Inc."
Release : 2023-01-03
File : 304 Pages
ISBN-13 : 9781098120238