The Complex Wkb Method For Nonlinear Equations I

eBook Download

BOOK EXCERPT:

When this book was first published (in Russian), it proved to become the fountainhead of a major stream of important papers in mathematics, physics and even chemistry; indeed, it formed the basis of new methodology and opened new directions for research. The present English edition includes new examples of applications to physics, hitherto unpublished or available only in Russian. Its central mathematical idea is to use topological methods to analyze isotropic invariant manifolds in order to obtain asymptotic series of eigenvalues and eigenvectors for the multi-dimensional Schrödinger equation, and also to take into account the so-called tunnel effects. Finite-dimensional linear theory is reviewed in detail. Infinite-dimensional linear theory and its applications to quantum statistics and quantum field theory, as well as the nonlinear theory (involving instantons), will be considered in a second volume.

Product Details :

Genre : Science
Author : Victor P. Maslov
Publisher : Birkhäuser
Release : 2012-12-06
File : 305 Pages
ISBN-13 : 9783034885362


Mathematical Modelling Of Heat And Mass Transfer Processes

eBook Download

BOOK EXCERPT:

In the present book the reader will find a review of methods for constructing a certain class of asymptotic solutions, which we call self-stabilizing solutions. This class includes solitons, kinks, traveling waves, etc. It can be said that either the solutions from this class or their derivatives are localized in the neighborhood of a certain curve or surface. For the present edition, the book published in Moscow by the Nauka publishing house in 1987, was almost completely revised, essentially up-dated, and shows our present understanding of the problems considered. The new results, obtained by the authors after the Russian edition was published, are referred to in footnotes. As before, the book can be divided into two parts: the methods for constructing asymptotic solutions ( Chapters I-V) and the application of these methods to some concrete problems (Chapters VI-VII). In Appendix a method for justification some asymptotic solutions is discussed briefly. The final formulas for the asymptotic solutions are given in the form of theorems. These theorems are unusual in form, since they present the results of calculations. The authors hope that the book will be useful to specialists both in differential equations and in the mathematical modeling of physical and chemical processes. The authors express their gratitude to Professor M. Hazewinkel for his attention to this work and his support.

Product Details :

Genre : Mathematics
Author : V.G. Danilov
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 331 Pages
ISBN-13 : 9789401104098


Spectral Theory And Differential Equations

eBook Download

BOOK EXCERPT:

This volume is dedicated to V. A. Marchenko on the occasion of his 90th birthday. It contains refereed original papers and survey articles written by his colleagues and former students of international stature and focuses on the areas to which he made important contributions: spectral theory of differential and difference operators and related topics of mathematical physics, including inverse problems of spectral theory, homogenization theory, and the theory of integrable systems. The papers in the volume provide a comprehensive account of many of the most significant recent developments in that broad spectrum of areas.

Product Details :

Genre : Mathematics
Author : E. Khruslov
Publisher : American Mathematical Society
Release : 2014-09-26
File : 266 Pages
ISBN-13 : 9781470416836


Semiclassical Analysis For Diffusions And Stochastic Processes

eBook Download

BOOK EXCERPT:

The monograph is devoted mainly to the analytical study of the differential, pseudo-differential and stochastic evolution equations describing the transition probabilities of various Markov processes. These include (i) diffusions (in particular,degenerate diffusions), (ii) more general jump-diffusions, especially stable jump-diffusions driven by stable Lévy processes, (iii) complex stochastic Schrödinger equations which correspond to models of quantum open systems. The main results of the book concern the existence, two-sided estimates, path integral representation, and small time and semiclassical asymptotics for the Green functions (or fundamental solutions) of these equations, which represent the transition probability densities of the corresponding random process. The boundary value problem for Hamiltonian systems and some spectral asymptotics ar also discussed. Readers should have an elementary knowledge of probability, complex and functional analysis, and calculus.

Product Details :

Genre : Mathematics
Author : Vassili N. Kolokoltsov
Publisher : Springer
Release : 2007-12-03
File : 360 Pages
ISBN-13 : 9783540465874


Partial Differential Equations V

eBook Download

BOOK EXCERPT:

In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution.

Product Details :

Genre : Mathematics
Author : M.V. Fedoryuk
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 248 Pages
ISBN-13 : 9783642584237


Localized Dynamics Of Thin Walled Shells

eBook Download

BOOK EXCERPT:

Localized Dynamics of Thin-Walled Shells focuses on localized vibrations and waves in thin-walled structures with variable geometrical and physical characteristics. It emphasizes novel asymptotic methods for solving boundary-value problems for dynamic equations in the shell theory, in the form of functions which are highly localized near both fixed and moving lines/points on the shell surface. Features First-of-its-kind work, synthesizing knowledge of the localization of vibrations and waves in thin-walled shells with a mathematical tool to study them Suitable for researchers working on the dynamics of thin shells and also as supplementary reading for undergraduates studying asymptotic methods Offers detailed analysis of wave processes in shells with varying geometric and physical parameters

Product Details :

Genre : Business & Economics
Author : Gennadi I. Mikhasev
Publisher : CRC Press
Release : 2020-04-21
File : 367 Pages
ISBN-13 : 9781351630696


Asymptotic Methods For Wave And Quantum Problems

eBook Download

BOOK EXCERPT:

The collection consists of four papers in different areas of mathematical physics united by the intrinsic coherence of the asymptotic methods used. The papers describe both the known results and most recent achievements, as well as new concepts and ideas in mathematical analysis of quantum and wave problems. In the introductory paper ``Quantization and Intrinsic Dynamics'' a relationship between quantization of symplectic manifolds and nonlinear wave equations is described and discussed from the viewpoint of the weak asymptotics method (asymptotics in distributions) and the semiclassical approximation method. It also explains a hidden dynamic geometry that arises when using these methods. Three other papers discuss applications of asymptotic methods to the construction of wave-type solutions of nonlinear PDE's, to the theory of semiclassical approximation (in particular, the Whitham method) for nonlinear second-order ordinary differential equations, and to the study of the Schrodinger type equations whose potential wells are sufficiently shallow that the discrete spectrum contains precisely one point. All the papers contain detailed references and are oriented not only to specialists in asymptotic methods, but also to a wider audience of researchers and graduate students working in partial differential equations and mathematical physics.

Product Details :

Genre : Asymptotic symmetry (Physics)
Author : M. V. Karasev
Publisher : American Mathematical Soc.
Release : 2003
File : 298 Pages
ISBN-13 : 0821833367


Quantization Methods In The Theory Of Differential Equations

eBook Download

BOOK EXCERPT:

This volume presents a systematic and mathematically rigorous exposition of methods for studying linear partial differential equations. It focuses on quantization of the corresponding objects (states, observables and canonical transformations) in the phase space. The quantization of all three types of classical objects is carried out in a unified way with the use of a special integral transform. This book covers recent as well as established results, treated within the framework of a universal approach. It also includes applications and provides a useful reference text for graduate and research-level readers.

Product Details :

Genre : Mathematics
Author : Vladimir E. Nazaikinskii
Publisher : CRC Press
Release : 2002-05-16
File : 372 Pages
ISBN-13 : 0415273641


Asymptotic Methods In The Theory Of Plates With Mixed Boundary Conditions

eBook Download

BOOK EXCERPT:

Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions comprehensively covers the theoretical background of asymptotic approaches and their use in solving mechanical engineering-oriented problems of structural members, primarily plates (statics and dynamics) with mixed boundary conditions. The first part of this book introduces the theory and application of asymptotic methods and includes a series of approaches that have been omitted or not rigorously treated in the existing literature. These lesser known approaches include the method of summation and construction of the asymptotically equivalent functions, methods of small and large delta, and the homotopy perturbations method. The second part of the book contains original results devoted to the solution of the mixed problems of the theory of plates, including statics, dynamics and stability of the studied objects. In addition, the applicability of the approaches presented to other related linear or nonlinear problems is addressed. Key features: • Includes analytical solving of mixed boundary value problems • Introduces modern asymptotic and summation procedures • Presents asymptotic approaches for nonlinear dynamics of rods, beams and plates • Covers statics, dynamics and stability of plates with mixed boundary conditions • Explains links between the Adomian and homotopy perturbation approaches Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions is a comprehensive reference for researchers and practitioners working in the field of Mechanics of Solids and Mechanical Engineering, and is also a valuable resource for graduate and postgraduate students from Civil and Mechanical Engineering.

Product Details :

Genre : Science
Author : Igor Andrianov
Publisher : John Wiley & Sons
Release : 2014-02-06
File : 281 Pages
ISBN-13 : 9781118725146


Asymptotic Methods For Engineers

eBook Download

BOOK EXCERPT:

Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).

Product Details :

Genre : Mathematics
Author : Igor V. Andrianov
Publisher : CRC Press
Release : 2024-05-20
File : 409 Pages
ISBN-13 : 9781040032770