The Foundations Of Statistics

eBook Download

BOOK EXCERPT:

Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.

Product Details :

Genre : Mathematics
Author : Leonard J. Savage
Publisher : Courier Corporation
Release : 2012-08-29
File : 341 Pages
ISBN-13 : 9780486137100


Topics In The Foundation Of Statistics

eBook Download

BOOK EXCERPT:

Foundational research focuses on the theory, but theories are to be related also to other theories, experiments, facts in their domains, data, and to their uses in applications, whether of prediction, control, or explanation. A theory is to be identified through its class of models, but not so narrowly as to disallow these roles. The language of science is to be studied separately, with special reference to the relations listed above, and to the consequent need for resources other than for theoretical description. Peculiar to the foundational level are questions of completeness (specifically in the representation of measurement), and of interpretation (a topic beset with confusions of truth and evidence, and with inappropriate metalinguistic abstraction).

Product Details :

Genre : Mathematics
Author : B.C. van Fraassen
Publisher : Springer Science & Business Media
Release : 2013-03-09
File : 161 Pages
ISBN-13 : 9789401588164


Works On The Foundations Of Statistical Physics

eBook Download

BOOK EXCERPT:

Initially published in Moscow in 1950 following the author's death, this book contains the first chapters of a large monograph Krylov planned entitled The foundations of physical statistics," his doctoral thesis on "The processes of relaxation of statistical systems and the criterion of mechanical instability," and a small paper entitled "On the description of exhaustively complete experiments." Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Product Details :

Genre : Science
Author : Nikolai Sergeevich Krylov
Publisher : Princeton University Press
Release : 2014-07-14
File : 313 Pages
ISBN-13 : 9781400854745


Reflections On The Foundations Of Probability And Statistics

eBook Download

BOOK EXCERPT:

This Festschrift celebrates Teddy Seidenfeld and his seminal contributions to philosophy, statistics, probability, game theory and related areas. The 13 contributions in this volume, written by leading researchers in these fields, are supplemented by an interview with Teddy Seidenfeld that offers an abbreviated intellectual autobiography, touching on topics of timeless interest concerning truth and uncertainty. Indeed, as the eminent philosopher Isaac Levi writes in this volume: "In a world dominated by Alternative Facts and Fake News, it is hard to believe that many of us have spent our life’s work, as has Teddy Seidenfeld, in discussing truth and uncertainty." The reader is invited to share this celebration of Teddy Seidenfeld’s work uncovering truths about uncertainty and the penetrating insights they offer to our common pursuit of truth in the face of uncertainty.

Product Details :

Genre : Philosophy
Author : Thomas Augustin
Publisher : Springer Nature
Release : 2023-01-14
File : 350 Pages
ISBN-13 : 9783031154362


Foundations Of Statistics For Data Scientists

eBook Download

BOOK EXCERPT:

Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.

Product Details :

Genre : Business & Economics
Author : Alan Agresti
Publisher : CRC Press
Release : 2021-11-22
File : 486 Pages
ISBN-13 : 9781000462913


The Logical Foundations Of Statistical Inference

eBook Download

BOOK EXCERPT:

Everyone knows it is easy to lie with statistics. It is important then to be able to tell a statistical lie from a valid statistical inference. It is a relatively widely accepted commonplace that our scientific knowledge is not certain and incorrigible, but merely probable, subject to refinement, modifi cation, and even overthrow. The rankest beginner at a gambling table understands that his decisions must be based on mathematical ex pectations - that is, on utilities weighted by probabilities. It is widely held that the same principles apply almost all the time in the game of life. If we turn to philosophers, or to mathematical statisticians, or to probability theorists for criteria of validity in statistical inference, for the general principles that distinguish well grounded from ill grounded generalizations and laws, or for the interpretation of that probability we must, like the gambler, take as our guide in life, we find disagreement, confusion, and frustration. We might be prepared to find disagreements on a philosophical and theoretical level (although we do not find them in the case of deductive logic) but we do not expect, and we may be surprised to find, that these theoretical disagreements lead to differences in the conclusions that are regarded as 'acceptable' in the practice of science and public affairs, and in the conduct of business.

Product Details :

Genre : Philosophy
Author : Henry E. Kyburg Jr.
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 440 Pages
ISBN-13 : 9789401021753


The Foundations Of Statistics A Simulation Based Approach

eBook Download

BOOK EXCERPT:

Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research — they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. ”Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended.” Harald Baayen, Professor of Linguistics, University of Alberta, Canada ”By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book’s coverage.” Colin Phillips, Professor of Linguistics, University of Maryland, USA

Product Details :

Genre : Mathematics
Author : Shravan Vasishth
Publisher : Springer Science & Business Media
Release : 2010-11-11
File : 187 Pages
ISBN-13 : 9783642163135


Foundations Of Statistical Algorithms

eBook Download

BOOK EXCERPT:

A new and refreshingly different approach to presenting the foundations of statistical algorithms, Foundations of Statistical Algorithms: With References to R Packages reviews the historical development of basic algorithms to illuminate the evolution of today’s more powerful statistical algorithms. It emphasizes recurring themes in all statistical algorithms, including computation, assessment and verification, iteration, intuition, randomness, repetition and parallelization, and scalability. Unique in scope, the book reviews the upcoming challenge of scaling many of the established techniques to very large data sets and delves into systematic verification by demonstrating how to derive general classes of worst case inputs and emphasizing the importance of testing over a large number of different inputs. Broadly accessible, the book offers examples, exercises, and selected solutions in each chapter as well as access to a supplementary website. After working through the material covered in the book, readers should not only understand current algorithms but also gain a deeper understanding of how algorithms are constructed, how to evaluate new algorithms, which recurring principles are used to tackle some of the tough problems statistical programmers face, and how to take an idea for a new method and turn it into something practically useful.

Product Details :

Genre : Mathematics
Author : Claus Weihs
Publisher : CRC Press
Release : 2013-12-09
File : 495 Pages
ISBN-13 : 9781439878873


Probabilistic Foundations Of Statistical Network Analysis

eBook Download

BOOK EXCERPT:

Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE.

Product Details :

Genre : Business & Economics
Author : Harry Crane
Publisher : CRC Press
Release : 2018-04-17
File : 236 Pages
ISBN-13 : 9781351807333


Foundations Of Statistical Natural Language Processing

eBook Download

BOOK EXCERPT:

Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Product Details :

Genre : Language Arts & Disciplines
Author : Christopher Manning
Publisher : MIT Press
Release : 1999-05-28
File : 722 Pages
ISBN-13 : 0262133601