WELCOME TO THE LIBRARY!!!
What are you looking for Book "Theta Functions And Knots" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil''s representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology. Theta Functions and Knots can be read in two perspectives. People with an interest in theta functions or knot theory can learn how the two are related. Those interested in ChernOCoSimons theory find here an introduction using the simplest case, that of abelian ChernOCoSimons theory. Moreover, the construction of abelian ChernOCoSimons theory is based entirely on quantum mechanics, and not on quantum field theory as it is usually done. Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is a self-contained, unified presentation. It is suitable for an advanced graduate course, as well as for self-study. Contents: Some Historical Facts; A Quantum Mechanical Prototype; Surfaces and Curves; The Theta Functions Associated to a Riemann Surface; From Theta Functions to Knots; Some Results About 3- and 4-Dimensional Manifolds; The Discrete Fourier Transform and Topological Quantum Field Theory; Theta Functions and Quantum Groups; An Epilogue OCo Abelian ChernOCoSimons Theory. Readership: Graduate students and young researchers with an interest in complex analysis, mathematical physics, algebra geometry and low dimensional topology.
Product Details :
Genre |
: Mathematics |
Author |
: R?zvan Gelca |
Publisher |
: World Scientific |
Release |
: 2014 |
File |
: 469 Pages |
ISBN-13 |
: 9789814520584 |
eBook Download
BOOK EXCERPT:
These proceedings review the recent developments in current research connected with an adequate description of condensed matter in statistics of quasiparticles, topological invariants and self-similar structures.
Product Details :
Genre |
: |
Author |
: Wojciech Florek |
Publisher |
: World Scientific |
Release |
: 1993-03-27 |
File |
: 508 Pages |
ISBN-13 |
: 9789814554008 |
eBook Download
BOOK EXCERPT:
The influence of Solomon Lefschetz (1884-1972) in geometry and topology 40 years after his death has been very profound. Lefschetz's influence in Mexican mathematics has been even greater. In this volume, celebrating 50 years of mathematics at Cinvestav-México, many of the fields of geometry and topology are represented by some of the leaders of their respective fields. This volume opens with Michael Atiyah reminiscing about his encounters with Lefschetz and México. Topics covered in this volume include symplectic flexibility, Chern-Simons theory and the theory of classical theta functions, toric topology, the Beilinson conjecture for finite-dimensional associative algebras, partial monoids and Dold-Thom functors, the weak b-principle, orbit configuration spaces, equivariant extensions of differential forms for noncompact Lie groups, dynamical systems and categories, and the Nahm pole boundary condition.
Product Details :
Genre |
: Mathematics |
Author |
: Ernesto Lupercio |
Publisher |
: American Mathematical Soc. |
Release |
: 2014-08-05 |
File |
: 240 Pages |
ISBN-13 |
: 9780821894941 |
eBook Download
BOOK EXCERPT:
This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications – Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.
Product Details :
Genre |
: Mathematics |
Author |
: Colin C. Adams |
Publisher |
: Springer |
Release |
: 2019-06-26 |
File |
: 479 Pages |
ISBN-13 |
: 9783030160319 |
eBook Download
BOOK EXCERPT:
Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10–15 years, this theory has been extended to certain non-holomorphic functions, the so-called “harmonic Maass forms”. The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called “mock theta functions” which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.
Product Details :
Genre |
: Mathematics |
Author |
: Kathrin Bringmann |
Publisher |
: American Mathematical Soc. |
Release |
: 2017-12-15 |
File |
: 409 Pages |
ISBN-13 |
: 9781470419448 |
eBook Download
BOOK EXCERPT:
This volume provides a self-contained introduction to applications of loop representations in particle physics and quantum gravity, in order to explore the gauge invariant quantization of Yang-Mills theories and gravity. First published in 1996, this title has been reissued as an Open Access publication on Cambridge Core.
Product Details :
Genre |
: Science |
Author |
: Rodolfo Gambini |
Publisher |
: Cambridge University Press |
Release |
: 2023-01-31 |
File |
: 341 Pages |
ISBN-13 |
: 9781009290197 |
eBook Download
BOOK EXCERPT:
In this book, the author announces the class of problems called ?entropy of knots? and gives an overview of modern physical applications of existing topological invariants.He constructs statistical models on knot diagrams and braids using the representations of Jones-Kauffman and Alexander invariants and puts forward the question of limit distribution of these invariants for randomly generated knots. The relation of powers of corresponding algebraic invariants to the Lyapunov exponents of the products of noncommutative matrices is described. Also the problem of conditional joint limit distributions for ?brownian bridges? on braids is discussed. Special cases of noncommutative groups PSL(2, R), PSL(2, Z) and braid groups are considered in detail.In this volume, the author also discusses the application of conformal methods for explicit construction of topological invariants for random walks on multiconnected manifolds. The construction of these topological invariants and the monodromy properties of correlation function of some conformal theories are also discussed.The author also considers the physical applications of ?knot entropy? problem in various physical systems, focussing on polymer
Product Details :
Genre |
: Mathematics |
Author |
: Sergei K. Nechaev |
Publisher |
: World Scientific |
Release |
: 1996 |
File |
: 206 Pages |
ISBN-13 |
: 9789810225193 |
eBook Download
BOOK EXCERPT:
This monograph provides a systematic treatment of topological quantum field theories (TQFT's) in three dimensions, inspired by the discovery of the Jones polynomial of knots, the Witten-Chern-Simons field theory, and the theory of quantum groups. The author, one of the leading experts in the subject, gives a rigorous and self-contained exposition of new fundamental algebraic and topological concepts that emerged in this theory. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFT's and 2-dimensional modular functors from so-called modular categories. This gives new knot and 3-manifold invariants as well as linear representations of the mapping class groups of surfaces. In Part II the machinery of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFT's constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and Kauffman's skein modules. This book is accessible to graduate students in mathematics and physics with a knowledge of basic algebra and topology. It will be an indispensable source for everyone who wishes to enter the forefront of this rapidly growing and fascinating area at the borderline of mathematics and physics. Most of the results and techniques presented here appear in book form for the first time.
Product Details :
Genre |
: Mathematics |
Author |
: Vladimir G. Turaev |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Release |
: 2020-03-23 |
File |
: 600 Pages |
ISBN-13 |
: 9783110883275 |
eBook Download
BOOK EXCERPT:
This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The Chern-Simons field theory and the Wess-Zumino-Witten model are described as the physical background of the invariants.
Product Details :
Genre |
: Science |
Author |
: Tomotada Ohtsuki |
Publisher |
: World Scientific |
Release |
: 2002 |
File |
: 508 Pages |
ISBN-13 |
: 9789810246754 |
eBook Download
BOOK EXCERPT:
Knot theory is a rapidly developing field of research with many applications not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of knot theory from its very beginnings to today's most recent research results. The topics include Alexander polynomials, Jones type polynomials, and Vassiliev invariants. With its appendix containing many useful tables and an extended list of references with over 3,500 entries it is an indispensable book for everyone concerned with knot theory. The book can serve as an introduction to the field for advanced undergraduate and graduate students. Also researchers working in outside areas such as theoretical physics or molecular biology will benefit from this thorough study which is complemented by many exercises and examples.
Product Details :
Genre |
: Mathematics |
Author |
: Akio Kawauchi |
Publisher |
: Springer Science & Business Media |
Release |
: 1996-09-26 |
File |
: 454 Pages |
ISBN-13 |
: 3764351241 |