Training Systems Using Python Statistical Modeling

eBook Download

BOOK EXCERPT:

Leverage the power of Python and statistical modeling techniques for building accurate predictive models Key FeaturesGet introduced to Python's rich suite of libraries for statistical modelingImplement regression, clustering and train neural networks from scratchIncludes real-world examples on training end-to-end machine learning systems in PythonBook Description Python's ease of use and multi-purpose nature has led it to become the choice of tool for many data scientists and machine learning developers today. Its rich libraries are widely used for data analysis, and more importantly, for building state-of-the-art predictive models. This book takes you through an exciting journey, of using these libraries to implement effective statistical models for predictive analytics. You’ll start by diving into classical statistical analysis, where you will learn to compute descriptive statistics using pandas. You will look at supervised learning, where you will explore the principles of machine learning and train different machine learning models from scratch. You will also work with binary prediction models, such as data classification using k-nearest neighbors, decision trees, and random forests. This book also covers algorithms for regression analysis, such as ridge and lasso regression, and their implementation in Python. You will also learn how neural networks can be trained and deployed for more accurate predictions, and which Python libraries can be used to implement them. By the end of this book, you will have all the knowledge you need to design, build, and deploy enterprise-grade statistical models for machine learning using Python and its rich ecosystem of libraries for predictive analytics. What you will learnUnderstand the importance of statistical modelingLearn about the various Python packages for statistical analysisImplement algorithms such as Naive Bayes, random forests, and moreBuild predictive models from scratch using Python's scikit-learn libraryImplement regression analysis and clusteringLearn how to train a neural network in PythonWho this book is for If you are a data scientist, a statistician or a machine learning developer looking to train and deploy effective machine learning models using popular statistical techniques, then this book is for you. Knowledge of Python programming is required to get the most out of this book.

Product Details :

Genre : Computers
Author : Curtis Miller
Publisher : Packt Publishing Ltd
Release : 2019-05-20
File : 284 Pages
ISBN-13 : 9781838820640


Building Machine Learning Systems Using Python

eBook Download

BOOK EXCERPT:

Explore Machine Learning Techniques, Different Predictive Models, and its Applications Ê KEY FEATURESÊÊ _ Extensive coverage of real examples on implementation and working of ML models. _ Includes different strategies used in Machine Learning by leading data scientists. _ Focuses on Machine Learning concepts and their evolution to algorithms. DESCRIPTIONÊ This book covers basic concepts of Machine Learning, various learning paradigms, different architectures and algorithms used in these paradigms. You will learn the power of ML models by exploring different predictive modeling techniques such as Regression, Clustering, and Classification. You will also get hands-on experience on methods and techniques such as Overfitting, Underfitting, Random Forest, Decision Trees, PCA, and Support Vector Machines. In this book real life examples with fully working of Python implementations are discussed in detail. At the end of the book you will learn about the unsupervised learning covering Hierarchical Clustering, K-means Clustering, Dimensionality Reduction, Anomaly detection, Principal Component Analysis.Ê WHAT YOU WILL LEARN _ Learn to perform data engineering and analysis. _ Build prototype ML models and production ML models from scratch. _ Develop strong proficiency in using scikit-learn and Python. _ Get hands-on experience with Random Forest, Logistic Regression, SVM, PCA, and Neural Networks. WHO THIS BOOK IS FORÊÊ This book is meant for beginners who want to gain knowledge about Machine Learning in detail. This book can also be used by Machine Learning users for a quick reference for fundamentals in Machine Learning. Readers should have basic knowledge of Python and Scikit-Learn before reading the book. TABLE OF CONTENTS 1. Introduction to Machine Learning 2. Linear Regression 3. Classification Using Logistic Regression 4. Overfitting and Regularization 5. Feasibility of Learning 6. Support Vector Machine 7. Neural Network 8. Decision Trees 9. Unsupervised Learning 10. Theory of Generalization 11. Bias and Fairness in ML

Product Details :

Genre : Computers
Author : Dr Deepti Chopra
Publisher : BPB Publications
Release : 2021-05-07
File : 134 Pages
ISBN-13 : 9789389423617


Data Driven Modeling Of Cyber Physical Systems Using Side Channel Analysis

eBook Download

BOOK EXCERPT:

This book provides a new perspective on modeling cyber-physical systems (CPS), using a data-driven approach. The authors cover the use of state-of-the-art machine learning and artificial intelligence algorithms for modeling various aspect of the CPS. This book provides insight on how a data-driven modeling approach can be utilized to take advantage of the relation between the cyber and the physical domain of the CPS to aid the first-principle approach in capturing the stochastic phenomena affecting the CPS. The authors provide practical use cases of the data-driven modeling approach for securing the CPS, presenting novel attack models, building and maintaining the digital twin of the physical system. The book also presents novel, data-driven algorithms to handle non- Euclidean data. In summary, this book presents a novel perspective for modeling the CPS.

Product Details :

Genre : Technology & Engineering
Author : Sujit Rokka Chhetri
Publisher : Springer Nature
Release : 2020-02-08
File : 240 Pages
ISBN-13 : 9783030379629


Machine Learning In Python For Process Systems Engineering

eBook Download

BOOK EXCERPT:

This book provides an application-focused exposition of modern ML tools that have proven useful in process industry and hands-on illustrations on how to develop ML-based solutions for process monitoring, predictive maintenance, fault diagnosis, inferential modeling, dimensionality reduction, and process control. This book considers unique characteristics of industrial process data and uses real data from industrial systems for illustrations. With the focus on practical implementation and minimal programming or ML prerequisites, the book covers the gap in available ML resources for industrial practitioners. The authors of this book have drawn from their years of experience in developing data-driven industrial solutions to provide a guided tour along the wide range of available ML methods and declutter the world of machine learning. The readers will find all the resources they need to deal with high-dimensional, correlated, noisy, corrupted, multimode, and nonlinear process data. The book has been divided into four parts. Part 1 provides a perspective on the importance of ML in process systems engineering and lays down the basic foundations of ML. Part 2 provides in-detail presentation of classical ML techniques and has been written keeping in mind the various characteristics of industrial process systems. Part 3 is focused on artificial neural networks and deep learning. Part 4 covers the important topic of deploying ML solutions over web and shows how to build a production-ready process monitoring web application. Broadly, the book covers the following: Varied applications of ML in process industry Fundamentals of machine learning workflow Practical methodologies for pre-processing industrial data Classical ML methods and their application for process monitoring, fault diagnosis, and soft sensing Deep learning and its application for predictive maintenance Reinforcement learning and its application for process control Deployment of ML solution over web

Product Details :

Genre : Computers
Author : Ankur Kumar
Publisher : MLforPSE
Release : 2022-02-25
File : 354 Pages
ISBN-13 :


Machine Learning In Python For Process And Equipment Condition Monitoring And Predictive Maintenance

eBook Download

BOOK EXCERPT:

This book is designed to help readers quickly gain a working knowledge of machine learning-based techniques that are widely employed for building equipment condition monitoring, plantwide monitoring , and predictive maintenance solutions in process industry . The book covers a broad spectrum of techniques ranging from univariate control charts to deep learning-based prediction of remaining useful life. Consequently, the readers can leverage the concepts learned to build advanced solutions for fault detection, fault diagnosis, and fault prognosis. The application focused approach of the book is reader friendly and easily digestible to the practicing and aspiring process engineers and data scientists. Upon completion, readers will be able to confidently navigate the Prognostics and Health Management literature and make judicious selection of modeling approaches suitable for their problems. This book has been divided into seven parts. Part 1 lays down the basic foundations of ML-assisted process and equipment condition monitoring, and predictive maintenance. Part 2 provides in-detail presentation of classical ML techniques for univariate signal monitoring. Different types of control charts and time-series pattern matching methodologies are discussed. Part 3 is focused on the widely popular multivariate statistical process monitoring (MSPM) techniques. Emphasis is paid to both the fault detection and fault isolation/diagnosis aspects. Part 4 covers the process monitoring applications of classical machine learning techniques such as k-NN, isolation forests, support vector machines, etc. These techniques come in handy for processes that cannot be satisfactorily handled via MSPM techniques. Part 5 navigates the world of artificial neural networks (ANN) and studies the different ANN structures that are commonly employed for fault detection and diagnosis in process industry. Part 6 focusses on vibration-based monitoring of rotating machinery and Part 7 deals with prognostic techniques for predictive maintenance applications. Broadly, the book covers the following: Exploratory analysis of process data Best practices for process monitoring and predictive maintenance solutions Univariate monitoring via control charts and time series data mining Multivariate statistical process monitoring techniques (PCA, PLS, FDA, etc.) Machine learning and deep learning techniques to handle dynamic, nonlinear, and multimodal processes Fault detection and diagnosis of rotating machinery using vibration data Remaining useful life predictions for predictive maintenance

Product Details :

Genre : Computers
Author : Ankur Kumar
Publisher : MLforPSE
Release : 2024-01-12
File : 365 Pages
ISBN-13 :


Python Programming Deep Learning

eBook Download

BOOK EXCERPT:

Easily Boost Your Skills In Python Programming & Become A Master In Deep Learning & Data Analysis! 💻 Python is an interpreted, high-level, general-purpose programming language that emphasizes code readability with its notable use of significant whitespace. What makes Python so popular in the IT industry is that it uses an object-oriented approach, which enables programmers to write clear, logical code for all types of projects, whether big or small. Hone your Python Programming skills and gain a sharp edge over other programmers the EASIEST way possible... with this practical beginner’s guide! In his 3-in-1 Python crash course for beginners, Anthony Adams gives novices like you simple, yet efficient tips and tricks to become a MASTER in Python coding for artificial intelligence, neural networks, machine learning, and data science/analysis! Here’s what you’ll get: ✅ Highly innovative ways to boost your understanding of Python programming, data analysis, and machine learning ✅ Quickly and effectively stop fraud with machine learning ✅ Practical and efficient exercises that make understanding Python quick & easy And so much more! As a beginner, you might feel a bit intimidated by the complexities of coding. Add the fact that most Python Programming crash course guides make learning harder than it has to be! ✓ With the help of this 3-in-1 guide, you will be given carefully sequenced Python Programming lessons that’ll maximize your understanding, and equip you with all the skills for real-life application! ★ Thrive in the IT industry with this comprehensive Python Programming crash course! ★ Scroll up, Click on “Buy Now”, and Start Learning Today!

Product Details :

Genre : Computers
Author : Anthony Adams
Publisher : Anthony Adams
Release : 2021-12-17
File : 315 Pages
ISBN-13 :


Advancement Of Intelligent Computational Methods And Technologies

eBook Download

BOOK EXCERPT:

The compiled volume originates from the notable contributions presented at the 1st International Conference on Advancementof Intelligent Computational Methods and Technologies (AICMT2023), which took place in a hybrid format on June 27, 2023,at Delhi Technical Campus, Greater Noida, Uttar Pradesh, India. This comprehensive collection serves as an exploration into the dynamic domain of intelligent computational methods and technologies, offering insights into the latest and upcoming trends in computation methods. AICMT2023’s scope encompasses the evolutionary trajectory of computational methods, addressing pertinent issues in real time implementation, delving into the emergence of new intelligent technologies, exploring next-generation problem-solving methodologies, and other interconnected areas. The conference is strategically designed to spotlight current research trendswithin the field, fostering a vibrant research culture and contributing to the collective knowledge base.

Product Details :

Genre : Computers
Author : O.P. Verma
Publisher : CRC Press
Release : 2024-06-30
File : 206 Pages
ISBN-13 : 9781040045930


Proceedings Of International Conference On Big Data Machine Learning And Applications

eBook Download

BOOK EXCERPT:

This book covers selected high-quality research papers presented at the International Conference on Big Data, Machine Learning, and Applications (BigDML 2019). It focuses on both theory and applications in the broad areas of big data and machine learning. It brings together the academia, researchers, developers and practitioners from scientific organizations and industry to share and disseminate recent research findings.

Product Details :

Genre : Technology & Engineering
Author : Ripon Patgiri
Publisher : Springer Nature
Release : 2021-03-22
File : 268 Pages
ISBN-13 : 9789813347885


Machine Learning With Lightgbm And Python

eBook Download

BOOK EXCERPT:

Take your software to the next level and solve real-world data science problems by building production-ready machine learning solutions using LightGBM and Python Key Features Get started with LightGBM, a powerful gradient-boosting library for building ML solutions Apply data science processes to real-world problems through case studies Elevate your software by building machine learning solutions on scalable platforms Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMachine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release. This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions. Starting with simple machine learning models in scikit-learn, you’ll explore the intricacies of gradient boosting machines and LightGBM. You’ll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems. As you progress, you’ll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI. By the end of this book, you’ll be well equipped to use various -of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.What you will learn Get an overview of ML and working with data and models in Python using scikit-learn Explore decision trees, ensemble learning, gradient boosting, DART, and GOSS Master LightGBM and apply it to classification and regression problems Tune and train your models using AutoML with FLAML and Optuna Build ML pipelines in Python to train and deploy models with secure and performant APIs Scale your solutions to production readiness with AWS Sagemaker, PostgresML, and Dask Who this book is forThis book is for software engineers aspiring to be better machine learning engineers and data scientists unfamiliar with LightGBM, looking to gain in-depth knowledge of its libraries. Basic to intermediate Python programming knowledge is required to get started with the book. The book is also an excellent source for ML veterans, with a strong focus on ML engineering with up-to-date and thorough coverage of platforms such as AWS Sagemaker, PostgresML, and Dask.

Product Details :

Genre : Computers
Author : Andrich van Wyk
Publisher : Packt Publishing Ltd
Release : 2023-09-29
File : 252 Pages
ISBN-13 : 9781800563056


Data Analytics For Intelligent Transportation Systems

eBook Download

BOOK EXCERPT:

Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics

Product Details :

Genre : Computers
Author : Mashrur Chowdhury
Publisher : Elsevier
Release : 2024-11-02
File : 572 Pages
ISBN-13 : 9780443138799