Visual Cortex And Deep Networks

eBook Download

BOOK EXCERPT:

A mathematical framework that describes learning of invariant representations in the ventral stream, offering both theoretical development and applications. The ventral visual stream is believed to underlie object recognition in primates. Over the past fifty years, researchers have developed a series of quantitative models that are increasingly faithful to the biological architecture. Recently, deep learning convolution networks—which do not reflect several important features of the ventral stream architecture and physiology—have been trained with extremely large datasets, resulting in model neurons that mimic object recognition but do not explain the nature of the computations carried out in the ventral stream. This book develops a mathematical framework that describes learning of invariant representations of the ventral stream and is particularly relevant to deep convolutional learning networks. The authors propose a theory based on the hypothesis that the main computational goal of the ventral stream is to compute neural representations of images that are invariant to transformations commonly encountered in the visual environment and are learned from unsupervised experience. They describe a general theoretical framework of a computational theory of invariance (with details and proofs offered in appendixes) and then review the application of the theory to the feedforward path of the ventral stream in the primate visual cortex.

Product Details :

Genre : Science
Author : Tomaso A. Poggio
Publisher : MIT Press
Release : 2016-09-23
File : 135 Pages
ISBN-13 : 9780262034722


Deep Learning To See

eBook Download

BOOK EXCERPT:

The remarkable progress in computer vision over the last few years is, by and large, attributed to deep learning, fueled by the availability of huge sets of labeled data, and paired with the explosive growth of the GPU paradigm. While subscribing to this view, this work criticizes the supposed scientific progress in the field, and proposes the investigation of vision within the framework of information-based laws of nature. This work poses fundamental questions about vision that remain far from understood, leading the reader on a journey populated by novel challenges resonating with the foundations of machine learning. The central thesis proposed is that for a deeper understanding of visual computational processes, it is necessary to look beyond the applications of general purpose machine learning algorithms, and focus instead on appropriate learning theories that take into account the spatiotemporal nature of the visual signal. Serving to inspire and stimulate critical reflection and discussion, yet requiring no prior advanced technical knowledge, the text can naturally be paired with classic textbooks on computer vision to better frame the current state of the art, open problems, and novel potential solutions. As such, it will be of great benefit to graduate and advanced undergraduate students in computer science, computational neuroscience, physics, and other related disciplines.

Product Details :

Genre : Computers
Author : Alessandro Betti
Publisher : Springer Nature
Release : 2022-04-26
File : 116 Pages
ISBN-13 : 9783030909871


Computational Neural Networks For Geophysical Data Processing

eBook Download

BOOK EXCERPT:

This book was primarily written for an audience that has heard about neural networks or has had some experience with the algorithms, but would like to gain a deeper understanding of the fundamental material. For those that already have a solid grasp of how to create a neural network application, this work can provide a wide range of examples of nuances in network design, data set design, testing strategy, and error analysis.Computational, rather than artificial, modifiers are used for neural networks in this book to make a distinction between networks that are implemented in hardware and those that are implemented in software. The term artificial neural network covers any implementation that is inorganic and is the most general term. Computational neural networks are only implemented in software but represent the vast majority of applications.While this book cannot provide a blue print for every conceivable geophysics application, it does outline a basic approach that has been used successfully.

Product Details :

Genre : Science
Author : M.M. Poulton
Publisher : Elsevier
Release : 2001-06-13
File : 351 Pages
ISBN-13 : 9780080529653


Deep Learning For Image Processing Applications

eBook Download

BOOK EXCERPT:

Deep learning and image processing are two areas of great interest to academics and industry professionals alike. The areas of application of these two disciplines range widely, encompassing fields such as medicine, robotics, and security and surveillance. The aim of this book, ‘Deep Learning for Image Processing Applications’, is to offer concepts from these two areas in the same platform, and the book brings together the shared ideas of professionals from academia and research about problems and solutions relating to the multifaceted aspects of the two disciplines. The first chapter provides an introduction to deep learning, and serves as the basis for much of what follows in the subsequent chapters, which cover subjects including: the application of deep neural networks for image classification; hand gesture recognition in robotics; deep learning techniques for image retrieval; disease detection using deep learning techniques; and the comparative analysis of deep data and big data. The book will be of interest to all those whose work involves the use of deep learning and image processing techniques.

Product Details :

Genre : Computers
Author : D.J. Hemanth
Publisher : IOS Press
Release : 2017-12
File : 284 Pages
ISBN-13 : 9781614998228


Deep Learning

eBook Download

BOOK EXCERPT:

An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.

Product Details :

Genre : Computers
Author : John D. Kelleher
Publisher : MIT Press
Release : 2019-09-10
File : 298 Pages
ISBN-13 : 9780262354905


Artificial Neural Networks For Intelligent Manufacturing

eBook Download

BOOK EXCERPT:

The quest for building systems that can function automatically has attracted a lot of attention over the centuries and created continuous research activities. As users of these systems we have never been satisfied, and demand more from the artifacts that are designed and manufactured. The current trend is to build autonomous systems that can adapt to changes in their environment. While there is a lot to be done before we reach this point, it is not possible to separate manufacturing systems from this trend. The desire to achieve fully automated manufacturing systems is here to stay. Manufacturing systems of the twenty-first century will demand more flexibility in product design, process planning, scheduling and process control. This may well be achieved through integrated software and hardware archi tectures that generate current decisions based on information collected from manufacturing systems environment, and execute these decisions by converting them into signals transferred through communication network. Manufacturing technology has not yet reached this state. However, the urge for achieving this goal is transferred into the term 'Intelligent Systems' that we started to use more in late 1980s. Knowledge-based systems, our first efforts in this endeavor, were not sufficient to generate the 'Intelligence' required - our quest still continues. Artificial neural network technology is becoming an integral part of intelligent manufacturing systems and will have a profound impact on the design of autonomous engineering systems over the next few years.

Product Details :

Genre : Technology & Engineering
Author : C.H. Dagli
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 474 Pages
ISBN-13 : 9789401107136


Artificial Neural Networks And Neural Information Processing Icann Iconip 2003

eBook Download

BOOK EXCERPT:

The refereed proceedings of the Joint International Conference on Artificial Neural Networks and International Conference on Neural Information Processing, ICANN/ICONIP 2003, held in Istanbul, Turkey, in June 2003. The 138 revised full papers were carefully reviewed and selected from 346 submissions. The papers are organized in topical sections on learning algorithms, support vector machine and kernel methods, statistical data analysis, pattern recognition, vision, speech recognition, robotics and control, signal processing, time-series prediction, intelligent systems, neural network hardware, cognitive science, computational neuroscience, context aware systems, complex-valued neural networks, emotion recognition, and applications in bioinformatics.

Product Details :

Genre : Computers
Author : Okyay Kaynak
Publisher : Springer
Release : 2003-08-03
File : 1164 Pages
ISBN-13 : 9783540449898


Deep Learning Networks

eBook Download

BOOK EXCERPT:

This textbook presents multiple facets of design, development and deployment of deep learning networks for both students and industry practitioners. It introduces a deep learning tool set with deep learning concepts interwoven to enhance understanding. It also presents the design and technical aspects of programming along with a practical way to understand the relationships between programming and technology for a variety of applications. It offers a tutorial for the reader to learn wide-ranging conceptual modeling and programming tools that animate deep learning applications. The book is especially directed to students taking senior level undergraduate courses and to industry practitioners interested in learning about and applying deep learning methods to practical real-world problems.

Product Details :

Genre : Technology & Engineering
Author : Jayakumar Singaram
Publisher : Springer Nature
Release : 2023-12-03
File : 173 Pages
ISBN-13 : 9783031392443


Integrating Computational And Neural Findings In Visual Object Perception

eBook Download

BOOK EXCERPT:

The articles in this Research Topic provide a state-of-the-art overview of the current progress in integrating computational and empirical research on visual object recognition. Developments in this exciting multidisciplinary field have recently gained momentum: High performance computing enabled breakthroughs in computer vision and computational neuroscience. In parallel, innovative machine learning applications have recently become available for datamining the large-scale, high resolution brain data acquired with (ultra-high field) fMRI and dense multi-unit recordings. Finally, new techniques to integrate such rich simulated and empirical datasets for direct model testing could aid the development of a comprehensive brain model. We hope that this Research Topic contributes to these encouraging advances and inspires future research avenues in computational and empirical neuroscience.

Product Details :

Genre : Neurosciences. Biological psychiatry. Neuropsychiatry
Author : Judith C. Peters
Publisher : Frontiers Media SA
Release : 2016-06-29
File : 139 Pages
ISBN-13 : 9782889198733


Oscillatory Neural Networks

eBook Download

BOOK EXCERPT:

Understanding of the human brain functioning currently represents a challenging problem. In contrast to usual serial computers and complicated hierarchically organized artificial man-made systems, decentralized, parallel and distributed information processing principles are inherent to the brain. Besides adaptation and learning, which play a crucial role in brain functioning, oscillatory neural activity, synchronization and resonance accompany the brain work. Neural-like oscillatory network models, designed by the authors for image processing, allow to elucidate the capabilities of dynamical, synchronization-based types of image processing, presumably exploited by the brain. The oscillatory network models, studied by means of computer modeling and qualitative analysis, are presented and discussed in the book. Some other problems of parallel distributed information processing are also considered, such as a recall process from network memory for large-scale recurrent associative memory neural networks, performance of oscillatory networks of associative memory, dynamical oscillatory network methods of image processing with synchronization-based performance, optical parallel information processing based on the nonlinear optical phenomenon of photon echo, and modeling random electric fields of quasi-monochromatic polarized light beams using systems of superposed stochastic oscillators. This makes the book highly interesting to researchers dealing with various aspects of parallel information processing.

Product Details :

Genre : Science
Author : Margarita G. Kuzmina
Publisher : Walter de Gruyter
Release : 2013-11-27
File : 172 Pages
ISBN-13 : 9783110269208