Anova And Mixed Models

eBook Download

BOOK EXCERPT:

ANOVA and Mixed Models: A Short Introduction Using R provides both the practitioner and researcher a compact introduction to the analysis of data from the most popular experimental designs. Based on knowledge from an introductory course on probability and statistics, the theoretical foundations of the most important models are introduced. The focus is on an intuitive understanding of the theory, common pitfalls in practice, and the application of the methods in R. From data visualization and model fitting, up to the interpretation of the corresponding output, the whole workflow is presented using R. The book does not only cover standard ANOVA models, but also models for more advanced designs and mixed models, which are common in many practical applications. Features Accessible to readers with a basic background in probability and statistics Covers fundamental concepts of experimental design and cause-effect relationships Introduces classical ANOVA models, including contrasts and multiple testing Provides an example-based introduction to mixed models Features basic concepts of split-plot and incomplete block designs R code available for all steps Supplementary website with additional resources and updates are available here. This book is primarily aimed at students, researchers, and practitioners from all areas who wish to analyze corresponding data with R. Readers will learn a broad array of models hand-in-hand with R, including the applications of some of the most important add-on packages.

Product Details :

Genre : Mathematics
Author : Lukas Meier
Publisher : CRC Press
Release : 2022-11-04
File : 202 Pages
ISBN-13 : 9781000776737


Mixed Models

eBook Download

BOOK EXCERPT:

A rigorous, self-contained examination of mixed model theory and application Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. Paying special attention to algorithms and their implementations, the book discusses: Modeling of complex clustered or longitudinal data Modeling data with multiple sources of variation Modeling biological variety and heterogeneity Mixed model as a compromise between the frequentist and Bayesian approaches Mixed model for the penalized log-likelihood Healthy Akaike Information Criterion (HAIC) How to cope with parameter multidimensionality How to solve ill-posed problems including image reconstruction problems Modeling of ensemble shapes and images Statistics of image processing Major results and points of discussion at the end of each chapter along with "Summary Points" sections make this reference not only comprehensive but also highly accessible for professionals and students alike in a broad range of fields such as cancer research, computer science, engineering, and industry.

Product Details :

Genre : Mathematics
Author : Eugene Demidenko
Publisher : John Wiley & Sons
Release : 2005-01-28
File : 732 Pages
ISBN-13 : 9780471726135


Generalized Linear Mixed Models

eBook Download

BOOK EXCERPT:

Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models

Product Details :

Genre : Mathematics
Author : Charles E. McCulloch
Publisher : IMS
Release : 2003
File : 100 Pages
ISBN-13 : 0940600544


Linear And Generalized Linear Mixed Models And Their Applications

eBook Download

BOOK EXCERPT:

This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.

Product Details :

Genre : Mathematics
Author : Jiming Jiang
Publisher : Springer Science & Business Media
Release : 2007-05-30
File : 269 Pages
ISBN-13 : 9780387479460


Generalized Linear Mixed Models

eBook Download

BOOK EXCERPT:

Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications (2nd edition) presents an updated introduction to linear modeling using the generalized linear mixed model (GLMM) as the overarching conceptual framework. For students new to statistical modeling, this book helps them see the big picture – linear modeling as broadly understood and its intimate connection with statistical design and mathematical statistics. For readers experienced in statistical practice, but new to GLMMs, the book provides a comprehensive introduction to GLMM methodology and its underlying theory. Unlike textbooks that focus on classical linear models or generalized linear models or mixed models, this book covers all of the above as members of a unified GLMM family of linear models. In addition to essential theory and methodology, this book features a rich collection of examples using SAS® software to illustrate GLMM practice. This second edition is updated to reflect lessons learned and experience gained regarding best practices and modeling choices faced by GLMM practitioners. New to this edition are two chapters focusing on Bayesian methods for GLMMs. Key Features: • Most statistical modeling books cover classical linear models or advanced generalized and mixed models; this book covers all members of the GLMM family – classical and advanced models. • Incorporates lessons learned from experience and on-going research to provide up-to-date examples of best practices. • Illustrates connections between statistical design and modeling: guidelines for translating study design into appropriate model and in-depth illustrations of how to implement these guidelines; use of GLMM methods to improve planning and design. • Discusses the difference between marginal and conditional models, differences in the inference space they are intended to address and when each type of model is appropriate. • In addition to likelihood-based frequentist estimation and inference, provides a brief introduction to Bayesian methods for GLMMs. Walt Stroup is an Emeritus Professor of Statistics. He served on the University of Nebraska statistics faculty for over 40 years, specializing in statistical modeling and statistical design. He is a Fellow of the American Statistical Association, winner of the University of Nebraska Outstanding Teaching and Innovative Curriculum Award and author or co-author of three books on mixed models and their extensions. Marina Ptukhina (Pa-too-he-nuh), PhD, is an Associate Professor of Statistics at Whitman College. She is interested in statistical modeling, design and analysis of research studies and their applications. Her research includes applications of statistics to economics, biostatistics and statistical education. Ptukhina earned a PhD in Statistics from the University of Nebraska-Lincoln, a Master of Science degree in Mathematics from Texas Tech University and a Specialist degree in Management from The National Technical University "Kharkiv Polytechnic Institute." Julie Garai, PhD, is a Data Scientist at Loop. She earned her PhD in Statistics from the University of Nebraska-Lincoln and a bachelor’s degree in Mathematics and Spanish from Doane College. Dr Garai actively collaborates with statisticians, psychologists, ecologists, forest scientists, software engineers, and business leaders in academia and industry. In her spare time, she enjoys leisurely walks with her dogs, dance parties with her children, and playing the trombone.

Product Details :

Genre : Mathematics
Author : Walter W. Stroup
Publisher : CRC Press
Release : 2024-05-21
File : 671 Pages
ISBN-13 : 9781498755580


Linear Mixed Models

eBook Download

BOOK EXCERPT:

•Dedicates an entire chapter to the key theories underlying LMMs for clustered, longitudinal, and repeated measures data •Provides descriptions, explanations, and examples of software code necessary to fit LMMs in SAS, SPSS, R, Stata, and HLM •Contains detailed tables of estimates and results, allowing for easy comparisons across software procedures •Presents step-by-step analyses of real-world data sets that arise from a variety of research settings and study designs, including hypothesis testing, interpretation of results, and model diagnostics •Integrates software code in each chapter to compare the relative advantages and disadvantages of each package •Supplemented by a website with software code, datasets, additional documents, and updates

Product Details :

Genre : Mathematics
Author : Brady T. West
Publisher : CRC Press
Release : 2022-06-24
File : 490 Pages
ISBN-13 : 9781000598261


The Sage Dictionary Of Statistics Methodology

eBook Download

BOOK EXCERPT:

Written in a clear, readable style with a wide range of explanations and examples, The SAGE Dictionary of Statistics & Methodology, Fifth Edition by W. Paul Vogt and R. Burke Johnson is a must-have dictionary that reflects recent changes in the fields of statistics and methodology. Packed with 500 new definitions, terms, and graphics, the Fifth Edition is an ideal reference for researchers and professionals in the field and provides everything students need to read and understand a research report, including elementary terms, concepts, methodology, and design definitions, as well as concepts from qualitative research methods and terms from theory and philosophy.

Product Details :

Genre : Reference
Author : W. Paul Vogt
Publisher : SAGE Publications
Release : 2015-09-30
File : 521 Pages
ISBN-13 : 9781483381756


Factors Affecting Host Selection By Mosquitoes Implications For The Transmission Of Vector Borne Pathogens

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Science
Author : Josué Martínez-de la Puente
Publisher : Frontiers Media SA
Release : 2022-02-03
File : 141 Pages
ISBN-13 : 9782889714445


Introduction To Winbugs For Ecologists

eBook Download

BOOK EXCERPT:

Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most common statistical distributions: the normal, the uniform, the binomial, and the Poisson. It describes the two different kinds of analysis of variance (ANOVA): one-way and two- or multiway. It looks at the general linear model, or ANCOVA, in R and WinBUGS. It introduces generalized linear model (GLM), i.e., the extension of the normal linear model to allow error distributions other than the normal. The GLM is then extended contain additional sources of random variation to become a generalized linear mixed model (GLMM) for a Poisson example and for a binomial example. The final two chapters showcase two fairly novel and nonstandard versions of a GLMM. The first is the site-occupancy model for species distributions; the second is the binomial (or N-) mixture model for estimation and modeling of abundance. - Introduction to the essential theories of key models used by ecologists - Complete juxtaposition of classical analyses in R and Bayesian analysis of the same models in WinBUGS - Provides every detail of R and WinBUGS code required to conduct all analyses - Companion Web Appendix that contains all code contained in the book and additional material (including more code and solutions to exercises)

Product Details :

Genre : Science
Author : Marc Kéry
Publisher : Academic Press
Release : 2010-07-19
File : 321 Pages
ISBN-13 : 9780123786067


Linear Mixed Models In Practice

eBook Download

BOOK EXCERPT:

A comprehensive treatment of linear mixed models, focusing on examples from designed experiments and longitudinal studies. Aimed at applied statisticians and biomedical researchers in industry, public health organisations, contract research organisations, and academia, this book is explanatory rather than mathematical rigorous. Although most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated, considerable effort was put into presenting the data analyses in a software-independent fashion.

Product Details :

Genre : Computers
Author : Geert Verbeke
Publisher : Springer
Release : 1997-08-07
File : 330 Pages
ISBN-13 : UOM:39015053940311