Complex Algebraic Curves

eBook Download

BOOK EXCERPT:

This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.

Product Details :

Genre : Mathematics
Author : Frances Clare Kirwan
Publisher : Cambridge University Press
Release : 1992-02-20
File : 278 Pages
ISBN-13 : 0521423538


Algebraic Curves

eBook Download

BOOK EXCERPT:

This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves – such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points – are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework

Product Details :

Genre : Mathematics
Author : Maxim E. Kazaryan
Publisher : Springer
Release : 2019-01-21
File : 237 Pages
ISBN-13 : 9783030029432


Pythagorean Hodograph Curves Algebra And Geometry Inseparable

eBook Download

BOOK EXCERPT:

By virtue of their special algebraic structures, Pythagorean-hodograph (PH) curves offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. This book offers a comprehensive and self-contained treatment of the mathematical theory of PH curves, including algorithms for their construction and examples of their practical applications. It emphasizes the interplay of ideas from algebra and geometry and their historical origins and includes many figures, worked examples, and detailed algorithm descriptions.

Product Details :

Genre : Mathematics
Author : Rida T Farouki
Publisher : Springer Science & Business Media
Release : 2008-02-01
File : 725 Pages
ISBN-13 : 9783540733980


Pencils Of Cubics And Algebraic Curves In The Real Projective Plane

eBook Download

BOOK EXCERPT:

Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP2. Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert’s sixteenth problem About the Author: Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.

Product Details :

Genre : Mathematics
Author : Séverine Fiedler - Le Touzé
Publisher : CRC Press
Release : 2018-12-07
File : 226 Pages
ISBN-13 : 9780429838255


Real Algebraic Geometry And Ordered Structures

eBook Download

BOOK EXCERPT:

This volume contains 16 carefully refereed articles by participants in the Special Semester and the AMS Special Session on Real Algebraic Geometry and Ordered Structures held at Louisiana State University and Southern University (Baton Rouge). The 23 contributors to this volume were among the 75 mathematicians from 15 countries who participated in the special semester. Topics include the topology of real algebraic curves (Hilbert's 16th problem), moduli of real algebraic curves, effective sums of squares of real forms (Hilbert's 17th problem), efficient real quantifier elimination, subanalytic sets and stratifications, semialgebraic singularity theory, radial vector fields, exponential functions and valuations on nonarchimedean ordered fields, valued field extensions, partially ordered and lattice-ordered rings, rings of continuous functions, spectra of rings, and abstract spaces of (higher-level) orderings and real places. This volume provides a good overview of the state of the art in this area in the 1990s. It includes both expository and original research papers by top workers in this thriving field. The authors and editors strived to make the volume useful to a wide audience (including students and researchers) interested in real algebraic geometry and ordered structures-two subjects that are obviously related, but seldom brought together.

Product Details :

Genre : Mathematics
Author : Charles N. Delzell
Publisher : American Mathematical Soc.
Release : 2000
File : 320 Pages
ISBN-13 : 9780821808047


Plane Algebraic Curves

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Mathematics
Author : BRIESKORN
Publisher : Birkhäuser
Release : 2013-11-11
File : 730 Pages
ISBN-13 : 9783034850971


A Guide To Plane Algebraic Curves

eBook Download

BOOK EXCERPT:

An accessible introduction to plane algebraic curves that also serves as a natural entry point to algebraic geometry.

Product Details :

Genre : Mathematics
Author : Keith Kendig
Publisher : American Mathematical Soc.
Release : 2011-12-31
File : 193 Pages
ISBN-13 : 9781614442035


Undergraduate Algebraic Geometry

eBook Download

BOOK EXCERPT:

Algebraic geometry is, essentially, the study of the solution of equations and occupies a central position in pure mathematics. This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time. With the minimum of prerequisites, Dr Reid introduces the reader to the basic concepts of algebraic geometry including: plane conics, cubics and the group law, affine and projective varieties, and non-singularity and dimension. He is at pains to stress the connections the subject has with commutative algebra as well as its relation to topology, differential geometry, and number theory. The book arises from an undergraduate course given at the University of Warwick and contains numerous examples and exercises illustrating the theory.

Product Details :

Genre : Mathematics
Author : Miles Reid
Publisher : Cambridge University Press
Release : 1988-12-15
File : 144 Pages
ISBN-13 : 0521356628


Algebraic Curves And Riemann Surfaces

eBook Download

BOOK EXCERPT:

In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Product Details :

Genre : Mathematics
Author : Rick Miranda
Publisher : American Mathematical Soc.
Release : 1995
File : 414 Pages
ISBN-13 : 9780821802687


Vertex Algebras And Algebraic Curves

eBook Download

BOOK EXCERPT:

Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Product Details :

Genre : Mathematics
Author : Edward Frenkel
Publisher : American Mathematical Soc.
Release : 2004-08-25
File : 418 Pages
ISBN-13 : 9780821836743