Continuous Time Markov Decision Processes

eBook Download

BOOK EXCERPT:

Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.

Product Details :

Genre : Mathematics
Author : Xianping Guo
Publisher : Springer Science & Business Media
Release : 2009-09-18
File : 240 Pages
ISBN-13 : 9783642025471


Continuous Time Markov Decision Processes

eBook Download

BOOK EXCERPT:

This book offers a systematic and rigorous treatment of continuous-time Markov decision processes, covering both theory and possible applications to queueing systems, epidemiology, finance, and other fields. Unlike most books on the subject, much attention is paid to problems with functional constraints and the realizability of strategies. Three major methods of investigations are presented, based on dynamic programming, linear programming, and reduction to discrete-time problems. Although the main focus is on models with total (discounted or undiscounted) cost criteria, models with average cost criteria and with impulsive controls are also discussed in depth. The book is self-contained. A separate chapter is devoted to Markov pure jump processes and the appendices collect the requisite background on real analysis and applied probability. All the statements in the main text are proved in detail. Researchers and graduate students in applied probability, operational research, statistics and engineering will find this monograph interesting, useful and valuable.

Product Details :

Genre : Mathematics
Author : Alexey Piunovskiy
Publisher : Springer Nature
Release : 2020-11-09
File : 605 Pages
ISBN-13 : 9783030549879


Markov Decision Processes With Their Applications

eBook Download

BOOK EXCERPT:

Put together by two top researchers in the Far East, this text examines Markov Decision Processes - also called stochastic dynamic programming - and their applications in the optimal control of discrete event systems, optimal replacement, and optimal allocations in sequential online auctions. This dynamic new book offers fresh applications of MDPs in areas such as the control of discrete event systems and the optimal allocations in sequential online auctions.

Product Details :

Genre : Business & Economics
Author : Qiying Hu
Publisher : Springer Science & Business Media
Release : 2007-09-14
File : 305 Pages
ISBN-13 : 9780387369518


Markov Decision Processes

eBook Download

BOOK EXCERPT:

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association

Product Details :

Genre : Mathematics
Author : Martin L. Puterman
Publisher : John Wiley & Sons
Release : 2014-08-28
File : 544 Pages
ISBN-13 : 9781118625873


Partially Observed Markov Decision Processes

eBook Download

BOOK EXCERPT:

This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.

Product Details :

Genre : Mathematics
Author : Vikram Krishnamurthy
Publisher : Cambridge University Press
Release : 2016-03-21
File : 491 Pages
ISBN-13 : 9781107134607


Continuous Time Markov Chains And Applications

eBook Download

BOOK EXCERPT:

This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.

Product Details :

Genre : Mathematics
Author : G. George Yin
Publisher : Springer Science & Business Media
Release : 2012-11-14
File : 442 Pages
ISBN-13 : 9781461443469


Selected Topics On Continuous Time Controlled Markov Chains And Markov Games

eBook Download

BOOK EXCERPT:

This book concerns continuous-time controlled Markov chains, also known as continuous-time Markov decision processes. They form a class of stochastic control problems in which a single decision-maker wishes to optimize a given objective function. This book is also concerned with Markov games, where two decision-makers (or players) try to optimize their own objective function. Both decision-making processes appear in a large number of applications in economics, operations research, engineering, and computer science, among other areas. An extensive, self-contained, up-to-date analysis of basic optimality criteria (such as discounted and average reward), and advanced optimality criteria (e.g., bias, overtaking, sensitive discount, and Blackwell optimality) is presented. A particular emphasis is made on the application of the results herein: algorithmic and computational issues are discussed, and applications to population models and epidemic processes are shown. This book is addressed to students and researchers in the fields of stochastic control and stochastic games. Moreover, it could be of interest also to undergraduate and beginning graduate students because the reader is not supposed to have a high mathematical background: a working knowledge of calculus, linear algebra, probability, and continuous-time Markov chains should suffice to understand the contents of the book.

Product Details :

Genre : Mathematics
Author : Tomas Prieto-Rumeau
Publisher : World Scientific
Release : 2012
File : 292 Pages
ISBN-13 : 9781848168497


Markov Decision Processes In Practice

eBook Download

BOOK EXCERPT:

This book presents classical Markov Decision Processes (MDP) for real-life applications and optimization. MDP allows users to develop and formally support approximate and simple decision rules, and this book showcases state-of-the-art applications in which MDP was key to the solution approach. The book is divided into six parts. Part 1 is devoted to the state-of-the-art theoretical foundation of MDP, including approximate methods such as policy improvement, successive approximation and infinite state spaces as well as an instructive chapter on Approximate Dynamic Programming. It then continues with five parts of specific and non-exhaustive application areas. Part 2 covers MDP healthcare applications, which includes different screening procedures, appointment scheduling, ambulance scheduling and blood management. Part 3 explores MDP modeling within transportation. This ranges from public to private transportation, from airports and traffic lights to car parking or charging your electric car . Part 4 contains three chapters that illustrates the structure of approximate policies for production or manufacturing structures. In Part 5, communications is highlighted as an important application area for MDP. It includes Gittins indices, down-to-earth call centers and wireless sensor networks. Finally Part 6 is dedicated to financial modeling, offering an instructive review to account for financial portfolios and derivatives under proportional transactional costs. The MDP applications in this book illustrate a variety of both standard and non-standard aspects of MDP modeling and its practical use. This book should appeal to readers for practitioning, academic research and educational purposes, with a background in, among others, operations research, mathematics, computer science, and industrial engineering.

Product Details :

Genre : Business & Economics
Author : Richard J. Boucherie
Publisher : Springer
Release : 2017-03-10
File : 563 Pages
ISBN-13 : 9783319477664


Markov Decision Process

eBook Download

BOOK EXCERPT:

What Is Markov Decision Process A discrete-time stochastic control process is referred to as a Markov decision process (MDP) in the field of mathematics. It offers a mathematical framework for modeling decision making in scenarios in which the outcomes are partially controlled by a decision maker and partly determined by random chance. The study of optimization issues that can be handled by dynamic programming lends itself well to the use of MDPs. At the very least, MDPs were recognized to exist in the 1950s. Ronald Howard's book, published in 1960 and titled Dynamic Programming and Markov Processes, is credited for initiating a core body of study on Markov decision processes. They have applications in a wide variety of fields, including as robotics, automatic control, economics, and manufacturing, among others. Because Markov decision processes are an extension of Markov chains, the Russian mathematician Andrey Markov is where the term "Markov decision processes" (MDPs) originated. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Markov decision process Chapter 2: Markov chain Chapter 3: Reinforcement learning Chapter 4: Bellman equation Chapter 5: Admissible decision rule Chapter 6: Partially observable Markov decision process Chapter 7: Temporal difference learning Chapter 8: Multi-armed bandit Chapter 9: Optimal stopping Chapter 10: Metropolis-Hastings algorithm (II) Answering the public top questions about markov decision process. (III) Real world examples for the usage of markov decision process in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of markov decision process' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of markov decision process. What is Artificial Intelligence Series The artificial intelligence book series provides comprehensive coverage in over 200 topics. Each ebook covers a specific Artificial Intelligence topic in depth, written by experts in the field. The series aims to give readers a thorough understanding of the concepts, techniques, history and applications of artificial intelligence. Topics covered include machine learning, deep learning, neural networks, computer vision, natural language processing, robotics, ethics and more. The ebooks are written for professionals, students, and anyone interested in learning about the latest developments in this rapidly advancing field. The artificial intelligence book series provides an in-depth yet accessible exploration, from the fundamental concepts to the state-of-the-art research. With over 200 volumes, readers gain a thorough grounding in all aspects of Artificial Intelligence. The ebooks are designed to build knowledge systematically, with later volumes building on the foundations laid by earlier ones. This comprehensive series is an indispensable resource for anyone seeking to develop expertise in artificial intelligence.

Product Details :

Genre : Computers
Author : Fouad Sabry
Publisher : One Billion Knowledgeable
Release : 2023-06-27
File : 115 Pages
ISBN-13 : PKEY:6610000480111


Modern Trends In Controlled Stochastic Processes

eBook Download

BOOK EXCERPT:

This book presents state-of-the-art solution methods and applications of stochastic optimal control. It is a collection of extended papers discussed at the traditional Liverpool workshop on controlled stochastic processes with participants from both the east and the west. New problems are formulated, and progresses of ongoing research are reported. Topics covered in this book include theoretical results and numerical methods for Markov and semi-Markov decision processes, optimal stopping of Markov processes, stochastic games, problems with partial information, optimal filtering, robust control, Q-learning, and self-organizing algorithms. Real-life case studies and applications, e.g., queueing systems, forest management, control of water resources, marketing science, and healthcare, are presented. Scientific researchers and postgraduate students interested in stochastic optimal control,- as well as practitioners will find this book appealing and a valuable reference. ​

Product Details :

Genre : Technology & Engineering
Author : Alexey Piunovskiy
Publisher : Springer Nature
Release : 2021-06-04
File : 356 Pages
ISBN-13 : 9783030769284