Introductory Statistical Inference

eBook Download

BOOK EXCERPT:

This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques. Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of distributions, and standard probability inequalities. It develops the Helmert transformation for normal distributions, introduces the notions of convergence, and spotlights the central limit theorems. Coverage highlights sampling distributions, Basu's theorem, Rao-Blackwellization and the Cramér-Rao inequality. The text also provides in-depth coverage of Lehmann-Scheffé theorems, focuses on tests of hypotheses, describes Bayesian methods and the Bayes' estimator, and develops large-sample inference. The author provides a historical context for statistics and statistical discoveries and answers to a majority of the end-of-chapter exercises. Designed primarily for a one-semester, first-year graduate course in probability and statistical inference, this text serves readers from varied backgrounds, ranging from engineering, economics, agriculture, and bioscience to finance, financial mathematics, operations and information management, and psychology.

Product Details :

Genre : Mathematics
Author : Nitis Mukhopadhyay
Publisher : CRC Press
Release : 2006-02-07
File : 306 Pages
ISBN-13 : 9781574446135


Introduction To Statistical Investigations

eBook Download

BOOK EXCERPT:

Introduction to Statistical Investigations, Second Edition provides a unified framework for explaining variation across study designs and variable types, helping students increase their statistical literacy and appreciate the indispensable role of statistics in scientific research. Requiring only basic algebra as a prerequisite, the program uses the immersive, simulation-based inference approach for which the author team is known. Students engage with various aspects of data collection and analysis using real data and clear explanations designed to strengthen multivariable understanding and reinforce concepts. Each chapter follows a coherent six-step statistical exploration and investigation method (ask a research question, design a study, explore the data, draw inferences, formulate conclusions, and look back and ahead) enabling students to assess a variety of concepts in a single assignment. Challenging questions based on research articles strengthen critical reading skills, fully worked examples demonstrate essential concepts and methods, and engaging visualizations illustrate key themes of explained variation. The end-of-chapter investigations expose students to various applications of statistics in the real world using real data from popular culture and published research studies in variety of disciplines. Accompanying examples throughout the text, user-friendly applets enable students to conduct the simulations and analyses covered in the book.

Product Details :

Genre : Mathematics
Author : Nathan Tintle
Publisher : John Wiley & Sons
Release : 2020-09-16
File : 143 Pages
ISBN-13 : 9781119683452


Introduction To Statistical Inference

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Mathematics
Author : Harold Adolph Freeman
Publisher :
Release : 1963
File : 516 Pages
ISBN-13 : UOM:39015004473875


Introduction To The Theory Of Statistical Inference

eBook Download

BOOK EXCERPT:

Based on the authors' lecture notes, this text presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Unlike related textbooks, it combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models. Suitable for a second semester undergraduate course on statistical inference, the text offers proofs to support the mathematics and does not require any use of measure theory. It illustrates core concepts using cartoons and provides solutions to all examples and problems.

Product Details :

Genre : Mathematics
Author : Hannelore Liero
Publisher : CRC Press
Release : 2016-04-19
File : 280 Pages
ISBN-13 : 9781466503205


Introductory Statistical Inference With The Likelihood Function

eBook Download

BOOK EXCERPT:

This textbook covers the fundamentals of statistical inference and statistical theory including Bayesian and frequentist approaches and methodology possible without excessive emphasis on the underlying mathematics. This book is about some of the basic principles of statistics that are necessary to understand and evaluate methods for analyzing complex data sets. The likelihood function is used for pure likelihood inference throughout the book. There is also coverage of severity and finite population sampling. The material was developed from an introductory statistical theory course taught by the author at the Johns Hopkins University’s Department of Biostatistics. Students and instructors in public health programs will benefit from the likelihood modeling approach that is used throughout the text. This will also appeal to epidemiologists and psychometricians. After a brief introduction, there are chapters on estimation, hypothesis testing, and maximum likelihood modeling. The book concludes with sections on Bayesian computation and inference. An appendix contains unique coverage of the interpretation of probability, and coverage of probability and mathematical concepts.

Product Details :

Genre : Medical
Author : Charles A. Rohde
Publisher : Springer
Release : 2014-10-31
File : 341 Pages
ISBN-13 : 9783319104614


Introduction To Statistics

eBook Download

BOOK EXCERPT:

The introductory statistics course presents serious pedagogical problems to the instructor. For the great majority of students, the course represents the only formal contact with statistical thinking that he or she will have in college. Students come from many different fields of study, and a large number suffer from math anxiety. Thus, an instructor who is willing to settle for some limited objectives will have a much better chance of success than an instructor who aims for a broad exposure to statistics. Many statisticians agree that the primary objective of the introductory statistics course is to introduce students to variability and uncertainty and how to cope with them when drawing inferences from observed data. Addi tionally, the introductory COurse should enable students to handle a limited number of useful statistical techniques. The present text, which is the successor to the author's Introduction to Statistics: A Nonparametric Approach (Houghton Mifflin Company, Boston, 1976), tries to meet these objectives by introducing the student to the ba sic ideas of estimation and hypothesis testing early in the course after a rather brief introduction to data organization and some simple ideas about probability. Estimation and hypothesis testing are discussed in terms of the two-sample problem, which is both conceptually simpler and more realistic than the one-sample problem that customarily serves as the basis for the discussion of statistical inference.

Product Details :

Genre : Mathematics
Author : Gottfried E. Noether
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 414 Pages
ISBN-13 : 9781461209430


Introduction To Linear Models And Statistical Inference

eBook Download

BOOK EXCERPT:

A multidisciplinary approach that emphasizes learning by analyzing real-world data sets This book is the result of the authors' hands-on classroom experience and is tailored to reflect how students best learn to analyze linear relationships. The text begins with the introduction of four simple examples of actual data sets. These examples are developed and analyzed throughout the text, and more complicated examples of data sets are introduced along the way. Taking a multidisciplinary approach, the book traces the conclusion of the analyses of data sets taken from geology, biology, economics, psychology, education, sociology, and environmental science. As students learn to analyze the data sets, they master increasingly sophisticated linear modeling techniques, including: * Simple linear models * Multivariate models * Model building * Analysis of variance (ANOVA) * Analysis of covariance (ANCOVA) * Logistic regression * Total least squares The basics of statistical analysis are developed and emphasized, particularly in testing the assumptions and drawing inferences from linear models. Exercises are included at the end of each chapter to test students' skills before moving on to more advanced techniques and models. These exercises are marked to indicate whether calculus, linear algebra, or computer skills are needed. Unlike other texts in the field, the mathematics underlying the models is carefully explained and accessible to students who may not have any background in calculus or linear algebra. Most chapters include an optional final section on linear algebra for students interested in developing a deeper understanding. The many data sets that appear in the text are available on the book's Web site. The MINITAB(r) software program is used to illustrate many of the examples. For students unfamiliar with MINITAB(r), an appendix introduces the key features needed to study linear models. With its multidisciplinary approach and use of real-world data sets that bring the subject alive, this is an excellent introduction to linear models for students in any of the natural or social sciences.

Product Details :

Genre : Mathematics
Author : Steven J. Janke
Publisher : John Wiley & Sons
Release : 2005-09-15
File : 600 Pages
ISBN-13 : 9780471740100


Introductory Statistics

eBook Download

BOOK EXCERPT:

A comprehensive, self-paced, step-by-step statistics course for tertiary students.

Product Details :

Genre : Juvenile Nonfiction
Author : J. Gosling
Publisher : Pascal Press
Release : 1995
File : 360 Pages
ISBN-13 : 1864410159


Fundamentals Of Statistical Inference

eBook Download

BOOK EXCERPT:

This book provides a coherent description of foundational matters concerning statistical inference and shows how statistics can help us make inductive inferences about a broader context, based only on a limited dataset such as a random sample drawn from a larger population. By relating those basics to the methodological debate about inferential errors associated with p-values and statistical significance testing, readers are provided with a clear grasp of what statistical inference presupposes, and what it can and cannot do. To facilitate intuition, the representations throughout the book are as non-technical as possible. The central inspiration behind the text comes from the scientific debate about good statistical practices and the replication crisis. Calls for statistical reform include an unprecedented methodological warning from the American Statistical Association in 2016, a special issue “Statistical Inference in the 21st Century: A World Beyond p 0.05” of iThe American StatisticianNature in 2019. The book elucidates the probabilistic foundations and the potential of sample-based inferences, including random data generation, effect size estimation, and the assessment of estimation uncertainty caused by random error. Based on a thorough understanding of those basics, it then describes the p-value concept and the null-hypothesis-significance-testing ritual, and finally points out the ensuing inferential errors. This provides readers with the competence to avoid ill-guided statistical routines and misinterpretations of statistical quantities in the future. Intended for readers with an interest in understanding the role of statistical inference, the book provides a prudent assessment of the knowledge gain that can be obtained from a particular set of data under consideration of the uncertainty caused by random error. More particularly, it offers an accessible resource for graduate students as well as statistical practitioners who have a basic knowledge of statistics. Last but not least, it is aimed at scientists with a genuine methodological interest in the above-mentioned reform debate.

Product Details :

Genre : Mathematics
Author : Norbert Hirschauer
Publisher : Springer Nature
Release : 2022-08-18
File : 141 Pages
ISBN-13 : 9783030990916


Introduction To Statistical Decision Theory

eBook Download

BOOK EXCERPT:

Introduction to Statistical Decision Theory: Utility Theory and Causal Analysis provides the theoretical background to approach decision theory from a statistical perspective. It covers both traditional approaches, in terms of value theory and expected utility theory, and recent developments, in terms of causal inference. The book is specifically designed to appeal to students and researchers that intend to acquire a knowledge of statistical science based on decision theory. Features Covers approaches for making decisions under certainty, risk, and uncertainty Illustrates expected utility theory and its extensions Describes approaches to elicit the utility function Reviews classical and Bayesian approaches to statistical inference based on decision theory Discusses the role of causal analysis in statistical decision theory

Product Details :

Genre : Mathematics
Author : Silvia Bacci
Publisher : CRC Press
Release : 2019-07-11
File : 292 Pages
ISBN-13 : 9781351621380