Introductory Statistical Inference With The Likelihood Function

eBook Download

BOOK EXCERPT:

This textbook covers the fundamentals of statistical inference and statistical theory including Bayesian and frequentist approaches and methodology possible without excessive emphasis on the underlying mathematics. This book is about some of the basic principles of statistics that are necessary to understand and evaluate methods for analyzing complex data sets. The likelihood function is used for pure likelihood inference throughout the book. There is also coverage of severity and finite population sampling. The material was developed from an introductory statistical theory course taught by the author at the Johns Hopkins University’s Department of Biostatistics. Students and instructors in public health programs will benefit from the likelihood modeling approach that is used throughout the text. This will also appeal to epidemiologists and psychometricians. After a brief introduction, there are chapters on estimation, hypothesis testing, and maximum likelihood modeling. The book concludes with sections on Bayesian computation and inference. An appendix contains unique coverage of the interpretation of probability, and coverage of probability and mathematical concepts.

Product Details :

Genre : Medical
Author : Charles A. Rohde
Publisher : Springer
Release : 2014-10-31
File : 341 Pages
ISBN-13 : 9783319104614


Introductory Statistical Inference With The Likelihood Function

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Charles A. Rohde
Publisher :
Release : 2014-11-30
File : 350 Pages
ISBN-13 : 3319104624


Introduction To Statistical Modelling And Inference

eBook Download

BOOK EXCERPT:

The complexity of large-scale data sets (“Big Data”) has stimulated the development of advanced computational methods for analysing them. There are two different kinds of methods to aid this. The model-based method uses probability models and likelihood and Bayesian theory, while the model-free method does not require a probability model, likelihood or Bayesian theory. These two approaches are based on different philosophical principles of probability theory, espoused by the famous statisticians Ronald Fisher and Jerzy Neyman. Introduction to Statistical Modelling and Inference covers simple experimental and survey designs, and probability models up to and including generalised linear (regression) models and some extensions of these, including finite mixtures. A wide range of examples from different application fields are also discussed and analysed. No special software is used, beyond that needed for maximum likelihood analysis of generalised linear models. Students are expected to have a basic mathematical background in algebra, coordinate geometry and calculus. Features • Probability models are developed from the shape of the sample empirical cumulative distribution function (cdf) or a transformation of it. • Bounds for the value of the population cumulative distribution function are obtained from the Beta distribution at each point of the empirical cdf. • Bayes’s theorem is developed from the properties of the screening test for a rare condition. • The multinomial distribution provides an always-true model for any randomly sampled data. • The model-free bootstrap method for finding the precision of a sample estimate has a model-based parallel – the Bayesian bootstrap – based on the always-true multinomial distribution. • The Bayesian posterior distributions of model parameters can be obtained from the maximum likelihood analysis of the model. This book is aimed at students in a wide range of disciplines including Data Science. The book is based on the model-based theory, used widely by scientists in many fields, and compares it, in less detail, with the model-free theory, popular in computer science, machine learning and official survey analysis. The development of the model-based theory is accelerated by recent developments in Bayesian analysis.

Product Details :

Genre : Mathematics
Author : Murray Aitkin
Publisher : CRC Press
Release : 2022-09-30
File : 391 Pages
ISBN-13 : 9781000644579


Introduction To The Theory Of Statistical Inference

eBook Download

BOOK EXCERPT:

Based on the authors' lecture notes, this text presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Unlike related textbooks, it combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models. Suitable for a second semester undergraduate course on statistical inference, the text offers proofs to support the mathematics and does not require any use of measure theory. It illustrates core concepts using cartoons and provides solutions to all examples and problems.

Product Details :

Genre : Mathematics
Author : Hannelore Liero
Publisher : CRC Press
Release : 2016-04-19
File : 280 Pages
ISBN-13 : 9781466503205


Introductory Statistical Inference

eBook Download

BOOK EXCERPT:

Introductory Statistical Inference develops the concepts and intricacies of statistical inference. With a review of probability concepts, this book discusses topics such as sufficiency, ancillarity, point estimation, minimum variance estimation, confidence intervals, multiple comparisons, and large-sample inference. It introduces techniques of two-stage sampling, fitting a straight line to data, tests of hypotheses, nonparametric methods, and the bootstrap method. It also features worked examples of statistical principles as well as exercises with hints. This text is suited for courses in probability and statistical inference at the upper-level undergraduate and graduate levels.

Product Details :

Genre : Mathematics
Author : Nitis Mukhopadhyay
Publisher : CRC Press
Release : 2006-02-07
File : 289 Pages
ISBN-13 : 9781420017403


A Concise Introduction To Statistical Inference

eBook Download

BOOK EXCERPT:

This short book introduces the main ideas of statistical inference in a way that is both user friendly and mathematically sound. Particular emphasis is placed on the common foundation of many models used in practice. In addition, the book focuses on the formulation of appropriate statistical models to study problems in business, economics, and the social sciences, as well as on how to interpret the results from statistical analyses. The book will be useful to students who are interested in rigorous applications of statistics to problems in business, economics and the social sciences, as well as students who have studied statistics in the past, but need a more solid grounding in statistical techniques to further their careers. Jacco Thijssen is professor of finance at the University of York, UK. He holds a PhD in mathematical economics from Tilburg University, Netherlands. His main research interests are in applications of optimal stopping theory, stochastic calculus, and game theory to problems in economics and finance. Professor Thijssen has earned several awards for his statistics teaching.

Product Details :

Genre : Mathematics
Author : Jacco Thijssen
Publisher : CRC Press
Release : 2016-11-25
File : 231 Pages
ISBN-13 : 9781498755788


Introduction To Statistical Inference

eBook Download

BOOK EXCERPT:

This excellent text emphasizes the inferential and decision-making aspects of statistics. The first chapter is mainly concerned with the elements of the calculus of probability. Additional chapters cover the general properties of distributions, testing hypotheses, and more.

Product Details :

Genre : Mathematics
Author : E. S. Keeping
Publisher : Courier Corporation
Release : 1995-01-01
File : 484 Pages
ISBN-13 : 0486685020


Applied Statistical Modelling For Ecologists

eBook Download

BOOK EXCERPT:

Applied Statistical Modelling for Ecologists provides a gentle introduction to the essential models of applied statistics: linear models, generalized linear models, mixed and hierarchical models. All models are fit with both a likelihood and a Bayesian approach, using several powerful software packages widely used in research publications: JAGS, NIMBLE, Stan, and TMB. In addition, the foundational method of maximum likelihood is explained in a manner that ecologists can really understand. This book is the successor of the widely used Introduction to WinBUGS for Ecologists (Kéry, Academic Press, 2010). Like its parent, it is extremely effective for both classroom use and self-study, allowing students and researchers alike to quickly learn, understand, and carry out a very wide range of statistical modelling tasks. The examples in Applied Statistical Modelling for Ecologists come from ecology and the environmental sciences, but the underlying statistical models are very widely used by scientists across many disciplines. This book will be useful for anybody who needs to learn and quickly become proficient in statistical modelling, with either a likelihood or a Bayesian focus, and in the model-fitting engines covered, including the three latest packages NIMBLE, Stan, and TMB. - Contains a concise and gentle introduction to probability and applied statistics as needed in ecology and the environmental sciences - Covers the foundations of modern applied statistical modelling - Gives a comprehensive, applied introduction to what currently are the most widely used and most exciting, cutting-edge model fitting software packages: JAGS, NIMBLE, Stan, and TMB - Provides a highly accessible applied introduction to the two dominant methods of fitting parametric statistical models: maximum likelihood and Bayesian posterior inference - Details the principles of model building, model checking and model selection - Adopts a "Rosetta Stone" approach, wherein understanding of one software, and of its associated language, will be greatly enhanced by seeing the analogous code in other engines - Provides all code available for download for students, at https://www.elsevier.com/books-and-journals/book-companion/9780443137150

Product Details :

Genre : Science
Author : Marc Kéry
Publisher : Elsevier
Release : 2024-07-18
File : 551 Pages
ISBN-13 : 9780443137167


Introduction To The Statistical Analysis Of Categorical Data

eBook Download

BOOK EXCERPT:

This book deals with the analysis of categorical data. Statistical models, especially log-linear models for contingency tables and logistic regression, are described and applied to real life data. Special emphasis is given to the use of graphical methods. The book is intended as a text for both undergraduate and graduate courses for statisticians, applied statisticians, social scientists, economists and epidemiologists. Many examples and exercises with solutions should help the reader to understand the material.

Product Details :

Genre : Mathematics
Author : Erling B. Andersen
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 274 Pages
ISBN-13 : 9783642591235


An Introduction To Probability And Statistical Inference

eBook Download

BOOK EXCERPT:

An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. - Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities - Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding - A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines - Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions - Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual

Product Details :

Genre : Mathematics
Author : George G. Roussas
Publisher : Academic Press
Release : 2014-10-21
File : 624 Pages
ISBN-13 : 9780128004371