Life Cycle Assessment And Biodegradability Of Biobased Composites

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Composite materials
Author : Salil Arora
Publisher :
Release : 2007
File : 618 Pages
ISBN-13 : MSU:31293028457814


Biobased Composites

eBook Download

BOOK EXCERPT:

Explore the world of biocomposites with this one-stop resource edited by four international leaders in the field Biobased Composites: Processing, Characterization, Properties, and Applications delivers a comprehensive treatment of all known characterization methods, properties, and industry applications of biobased composites materials. This unique, one-stop resource covers all major developments in the field from the last decade of research into this environmentally beneficial area. The internationally recognized editors have selected resources that represent advances in the mechanical, thermal, tribological, and water sorption properties of biobased composites, and cover new areas of research in physico-chemical analysis, flame retardancy, failure mechanisms, lifecycle assessment, and modeling of biobased composites. The low weight, low cost, excellent thermal recyclability, and biodegradability of biobased composites make them ideal candidates to replace engineered plastic products derived from fossil fuel. This book provides its readers with the knowledge they'll require to understand a new class of materials increasingly being used in the automotive and packaging industries, aerospace, the military, and construction. It also includes: An extended discussion of the environmental impact of biobased composites using a life cycle methodology A review of forecasts of natural fiber reinforced polymeric composites and its degradability concerns An analysis of the physical and mechanical properties of a biobased composite with sisal powder A comprehensive treatment of the mechanical, thermal, tribological, and dielectric properties of biobased composites A review of processing methods for the manufacture of biobased composites Perfect for materials scientists in private industry, government laboratories, or engaged in academic research, Biobased Composites will also earn a place in the libraries of industrial and manufacturing engineers who seek a better understanding of the beneficial industrial applications of biocomposites in industries ranging from automobiles to packaging.

Product Details :

Genre : Technology & Engineering
Author : Anish Khan
Publisher : John Wiley & Sons
Release : 2021-02-03
File : 240 Pages
ISBN-13 : 9781119641810


Biobased Composites

eBook Download

BOOK EXCERPT:

Explore the world of biocomposites with this one-stop resource edited by four international leaders in the field Bio-based Composites: Characterization, Properties, and Applications delivers a comprehensive treatment of all known characterization methods, properties, and industry applications of bio-based composites materials. This unique, one-stop resource covers all major developments in the field from the last decade of research into this environmentally beneficial area. The internationally recognized editors have selected resources that represent advances in the mechanical, thermal, tribological, and water sorption properties of bio-based composites, and cover new areas of research in physico-chemical analysis, flame retardancy, failure mechanisms, lifecycle assessment, and modeling of bio-based composites. The low weight, low cost, excellent thermal recyclability, and biodegradability of bio-based composites make them ideal candidates to replace engineered plastic products derived from fossil fuel. This book provides its readers with the knowledge they’ll require to understand a new class of materials increasingly being used in the automotive and packaging industries, aerospace, the military, and construction. It also includes: An extended discussion of the environmental impact of bio-based composites using a lice cycle methodology A review of forecasts of natural fiber reinforced polymeric composites and its degradability concerns An analysis of the physical and mechanical properties of a bio-based composite with sisal powder A comprehensive treatment of the mechanical, thermal, tribological, and dielectric properties of bio-based composites A review of processing methods for the manufacture of bio-based composites Perfect for materials scientists in private industry, government laboratories, or engaged in academic research, Bio-Based Composites will also earn a place in the libraries of industrial and manufacturing engineers who seek a better understanding of the beneficial industrial applications of biocomposites in industries ranging from automobiles to packaging.

Product Details :

Genre : Technology & Engineering
Author : Anish Khan
Publisher : John Wiley & Sons
Release : 2021-03-16
File : 240 Pages
ISBN-13 : 9781119641797


Life Cycle Assessment Of A Hybrid Poly Butylene Succinate Composite

eBook Download

BOOK EXCERPT:

Poly butylene succinate (PBS) is a biodegradable plastic polymer that has physical and mechanical properties similar to common petroleum plastics like polypropylene (PP) and polyethylene (PE). PBS may be produced from petroleum or bio-based feedstocks, or by a hybrid combination of petroleum and bio-based resources. Producers are reducing content of petroleum components used for the production of PBS, and by doing so are seeking potential environmental performance improvements. In this study, “hybrid” PBS refers to the production of PBS polymer from bio-based succinic acid (SAC) sourced from sorghum and petroleum-based 1, 4-butanediol (BDO). Given its biodegradability, PBS is commercially used for compostable bags and agricultural mulching film applications. A recent study in Ontario identified composite materials made with PBS blended with natural fibres like switchgrass (SG) as promising for applications in automotive products. Such novel composite materials are touted as potential bio-based alternatives to conventional petroleum-based plastics. Of the few studies that have considered the environmental performance of PBS materials, none have assessed the potential environmental impacts of a hybrid PBS composite. Therefore, this study undertook a life cycle assessment (LCA) of SG reinforced hybrid PBS composite (hybrid composite). LCA is an environmental management technique that is used to assess environmental aspects (inputs and outputs) and potential environmental impacts of a product or service throughout its life cycle. The analysis considered a cradle-to-gate system boundary and evaluated eleven environmental performance indicators. The environmental performance of the hybrid composite was compared to a conventional glass fibre (GF) reinforced polypropylene (PP) composite (baseline composite), a material that is widely used in automotive components. Results showed that the production of the hybrid composite in comparison to the baseline composite decreased potential impact for most of the assessed indicators: cumulative energy demand by 40%, waste heat by 23%, global warming potential by 35%, smog by 2%, carcinogens by 54%, non-carcinogens by 172%, respiratory effects by 22% and ecotoxicity by 45%. Increases in the values of impact indicators were apparent for ozone depletion, acidification, and eutrophication by 43%, 16%, and 322%, respectively. Analysis revealed that dominant influences on results were not related directly to the bio-based make-up. Rather, the biggest influence on the environmental performance of composite production were the sources of heat used in petroleum-based materials, the energy mix in electricity for bio-based materials, the type of reinforcing fibre and the co-product treatment methodology used. The study helps fill a gap in knowledge regarding bio-based chemicals and hybrid biodegradable plastic composites, and points to opportunities for future research on feedstocks for industrial composite materials. The importance of this study is that it helps to identify the environmental strengths and weaknesses associated with the production of the hybrid composite specifically, and bio-based materials more generally. It points to alternative material substitution options for use in the automotive industry. In this study, life cycle assessment exemplifies multidisciplinary methodologies, which seek to traverse the boundaries between the social and natural sciences and disciplines to support more sustainable policy decisions for a bio-economy. The systematic nature and the widely applicable consequences of this LCA study have the potential to contribute to industrial and business management, and reach the public policy arena in an effort to drive environmental and social change.

Product Details :

Genre :
Author : Hassan Moussa
Publisher :
Release : 2014
File : 130 Pages
ISBN-13 : OCLC:1087359530


Sustainable Plastics

eBook Download

BOOK EXCERPT:

Enables Readers to Understand the What, Why, and How Behind Using Sustainable Plastics in Manufacturing Operations The impact of 50 years of unbridled plastics production, use, and disposal is now becoming well known and documented. Plastics made from non-renewable petroleum and natural gas resources threaten the environment, human health, species maintenance, and the very life of the ocean. This book helps readers understand the ability of plastics to be sustainable and goes over the plastic products which have a lower carbon footprint, lower waste, and lower pollution. The well-qualified author’s unique perspective puts a special focus on comprehensive coverage of environmental impacts of plastics including Life Cycle Assessments (LCA) and sustainability strategies related to biobased plastics (e.g., corn), recycled plastics, and petroleum-based plastics. Other samples topics covered in the book include: End-of-life options for petroleum and biobased plastics including mechanical recycling, chemical recycling, and composting ASTM biodegradation standards for compost, marine, anaerobic digestion, and landfill environments Polymer processing, including injection molding, blow molding, extrusion, and compression molding Environmental data and coverage of petroleum plastics, sustainable composites, and new information on bio-based plastics The book serves as an invaluable resource for plastics engineers, materials engineers, and all professionals in related disciplines looking to understand and apply the usage of sustainable plastics in many different types of manufacturing operations.

Product Details :

Genre : Technology & Engineering
Author : Joseph P. Greene
Publisher : John Wiley & Sons
Release : 2022-10-11
File : 470 Pages
ISBN-13 : 9781119882077


Bio Based Composites For High Performance Materials

eBook Download

BOOK EXCERPT:

Since synthetic plastics derived from fossil resources are mostly non-biodegradable, many academic and industrial researchers have shifted their attention toward bio-based materials, which are more eco-friendly. Bio-Based Composites for High-Performance Materials: From Strategy to Industrial Application provides an overview of the state-of-art in bio-based composites. The book integrates knowledge from various disciplines including plant science, materials science, polymer chemistry, chemical engineering, and nanotechnology. It discusses the raw materials used in bio-based composites, basic design principles, properties, applications, and life cycle assessments. The book also presents a strategic and policy-oriented view of these composites and considers the costs of retrofitting existing chemical production plants for bio-based composite manufacture. It is a definitive resource on bio-composites for academics, regulatory agencies, research and development communities, and industries worldwide.

Product Details :

Genre : Technology & Engineering
Author : Wirasak Smitthipong
Publisher : CRC Press
Release : 2014-10-24
File : 340 Pages
ISBN-13 : 9781482214482


Bio Based Packaging

eBook Download

BOOK EXCERPT:

Bio-Based Packaging Bio-Based Packaging An authoritative and up-to-date review of sustainable packaging development and applications Bio-Based Packaging explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites. In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book: Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact Contains real-world case studies of bio-based packaging applications Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products Bio-Based Packaging is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Product Details :

Genre : Science
Author : Salit Mohd Sapuan
Publisher : John Wiley & Sons
Release : 2021-03-29
File : 548 Pages
ISBN-13 : 9781119381075


Biobased Products From Food Sector Waste

eBook Download

BOOK EXCERPT:

In the past, food waste has been used to produce biogas and biofuels, fertilizers, and animal feed. Using it as a feedstock for innovative biorefineries is not only an ethical issue but also a smart application of the circular economy. This book explores the zero-waste concept in the thriving biobased sector, proposing technologies and procedures to meet the sustainable development goals. The volume categorizes food waste sources and proposes an impressive number of high value-added compounds (e.g., platform chemicals, enzymes, nutraceuticals, antioxidants, organic acids, phosphate, bioadsorbents, pectin, solvents, and pigments) that can be obtained in a sequential biocascade, via chemical, biochemical, thermal, and physical technologies. The synthesis of bioplastics from food waste, their copolymerization and blending, as well as the production of biocomposites and bionanocomposite with biofillers from food scraps, are presented: eluding the cost of waste disposal, reducing biobased materials price, and avoiding using edible resources as a starting material for biobased items are the main beneficial peculiarities of the process. The Authors illustrate challenging characteristics of new biobased materials, such as their mechanical and physico-chemical features, their biodegradability, compostability, recyclability, chemical compatibility, and barrier properties. The volume also delves into socioeconomic considerations and environmental concerns related to the upcycling of food waste, as well as the safety and life cycle assessment of biobased products. Finally, the authors address how advances in digital technology can make food waste upcycling a negative-cost process and discuss best practices to practically implement the biorefinery concept. Research gaps and needs are suggested, and recommendations for food waste handling and management during this COVID-19 pandemic are provided.

Product Details :

Genre : Technology & Engineering
Author : Teresa Cecchi
Publisher : Springer Nature
Release : 2021-10-18
File : 427 Pages
ISBN-13 : 9783030634360


Sustainability Of Green And Eco Friendly Composites

eBook Download

BOOK EXCERPT:

The book explores the pertinent aspects of sustainability of green and eco-friendly composites including their development methods and processing, characterization, properties, and applications. Significance for the design and engineering of high-performance green and eco-friendly composites is discussed in the present book. Insights on a wide spectrum of potential advanced applications ranging from automotive and aerospace to biomedical and packaging, etc. using these are highlighted. Further, it discusses life cycle and carbon footprint assessment of sustainable materials. Features: Explores different processing methods of green and eco-friendly composites Discusses development and optimization of green nanocomposites for sustainable manufacturing Collates modern green and eco-friendly composites research from theory to application Covers hybridization of reinforced fibers on the performance of green and eco-friendly composites Analyzes and discusses calculation of carbon footprint and Life Cycle Assessment of composites This book is aimed at graduate students and researchers in materials science and engineering, sustainable materials, composites, and nanomaterials.

Product Details :

Genre : Technology & Engineering
Author : Sumit Gupta
Publisher : CRC Press
Release : 2023-08-31
File : 221 Pages
ISBN-13 : 9781000932485


Advancing Green Design Of Bio Based Composites Through Durability Assessment And Material Modeling Efforts

eBook Download

BOOK EXCERPT:

The development of environmentally sustainable materials and practices that are less harmful to the environment is of great necessity. Wood polymer composites (WPCs) derived from bio-based polymers offer a much-needed alternative to conventional petroleum-based WPCs (derived from petroleum-based thermoplastics). Bio-based WPCs are a class of composites offering a wide range of potential application as a building material. These bio-based WPCs can exhibit comparable mechanical performance to their petroleum-based counterparts, while being able to be made from industry byproducts. Compared to conventional WPCs, the biodegradable aspect of these bio-based composites is perceived as a significant environmental benefit because of reduced burdens associated with waste generation. Assessing aspects of environmental sustainability in relation to these materials is of great importance, as we aim to shift current design practices to reduce environmental impacts and provide the necessary insight to promote and encourage smarter, greener design. Further, these composites may be exposed to environmental conditions during use that may affect their durability. Models that incorporate deterioration of the materials are needed and an active are of research. This work examines the durability of bio-based WPC composites subjected to deteriorative environmental aging and accesses the environmental impacts associated with their production. It was found that their durability can greatly influence design decisions, when accounting for total member service life. Additionally, although bio-based WPCs have a potential to offer a wide range of ecological advantages, environmental impacts can still be high for these materials depending on how they are produced and manufactured. Having a better understanding of their durability and environmental impacts will shift traditional design practices and decisions to encourage a broader consideration of these materials, and ultimately further promote "green" engineering.

Product Details :

Genre :
Author : Kanotha Charles Kamau-Devers
Publisher :
Release : 2020
File : 0 Pages
ISBN-13 : 9798698524915