Number Theory And Related Fields

eBook Download

BOOK EXCERPT:

“Number Theory and Related Fields” collects contributions based on the proceedings of the "International Number Theory Conference in Memory of Alf van der Poorten," hosted by CARMA and held March 12-16th 2012 at the University of Newcastle, Australia. The purpose of the conference was to promote number theory research in Australia while commemorating the legacy of Alf van der Poorten, who had written over 170 papers on the topic of number theory and collaborated with dozens of researchers. The research articles and surveys presented in this book were written by some of the most distinguished mathematicians in the field of number theory, and articles will include related topics that focus on the various research interests of Dr. van der Poorten.​

Product Details :

Genre : Mathematics
Author : Jonathan M. Borwein
Publisher : Springer Science & Business Media
Release : 2013-05-16
File : 395 Pages
ISBN-13 : 9781461466420


An Introduction To Probabilistic Number Theory

eBook Download

BOOK EXCERPT:

This introductory textbook for graduate students presents modern developments in probabilistic number theory, many for the first time.

Product Details :

Genre : Mathematics
Author : Emmanuel Kowalski
Publisher : Cambridge University Press
Release : 2021-05-06
File : 271 Pages
ISBN-13 : 9781108840965


Number Theory Related To Modular Curves

eBook Download

BOOK EXCERPT:

This volume contains the proceedings of the Barcelona-Boston-Tokyo Number Theory Seminar, which was held in memory of Fumiyuki Momose, a distinguished number theorist from Chuo University in Tokyo. Momose, who was a student of Yasutaka Ihara, made important contributions to the theory of Galois representations attached to modular forms, rational points on elliptic and modular curves, modularity of some families of Abelian varieties, and applications of arithmetic geometry to cryptography. Papers contained in this volume cover these general themes in addition to discussing Momose's contributions as well as recent work and new results.

Product Details :

Genre : Mathematics
Author : Joan-Carles Lario
Publisher : American Mathematical Soc.
Release : 2018-01-29
File : 234 Pages
ISBN-13 : 9781470419912


Algorithmic Number Theory

eBook Download

BOOK EXCERPT:

The field of diagnostic nuclear medicine has changed significantly during the past decade. This volume is designed to present the student and the professional with a comprehensive update of recent developments not found in other textbooks on the subject. The various clinical applications of nuclear medicine techniques are extensively considered, and due attention is given also to radiopharmaceuticals, equipment and instrumentation, reconstruction techniques and the principles of gene imaging.

Product Details :

Genre : Computers
Author : Joe P. Buhler
Publisher : Springer Science & Business Media
Release : 1998-06-05
File : 660 Pages
ISBN-13 : 3540646574


Quantized Number Theory Fractal Strings And The Riemann Hypothesis From Spectral Operators To Phase Transitions And Universality

eBook Download

BOOK EXCERPT:

Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to ½ or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.

Product Details :

Genre : Mathematics
Author : Hafedh Herichi
Publisher : World Scientific
Release : 2021-07-27
File : 494 Pages
ISBN-13 : 9789813230811


Number Theory Related To Fermat S Last Theorem

eBook Download

BOOK EXCERPT:

Product Details :

Genre : Science
Author : Koblitz
Publisher : Springer Science & Business Media
Release : 2013-11-21
File : 366 Pages
ISBN-13 : 9781489966995


Value Distribution Theory Related To Number Theory

eBook Download

BOOK EXCERPT:

The subject of the book is Diophantine approximation and Nevanlinna theory. This book proves not just some new results and directions but challenging open problems in Diophantine approximation and Nevanlinna theory. The authors’ newest research activities on these subjects over the past eight years are collected here. Some of the significant findings are the proof of Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, generalized abc-conjecture, and more.

Product Details :

Genre : Mathematics
Author : Pei-Chu Hu
Publisher : Springer Science & Business Media
Release : 2006-10-06
File : 546 Pages
ISBN-13 : 9783764375690


Number Theory

eBook Download

BOOK EXCERPT:

Number Theory is a comprehensive exploration of the foundational concepts, theorems, and applications in number theory. Prime numbers, congruences, and Diophantine equations, offering both classical insights and modern perspectives. It caters to a broad audience, from students to advanced mathematicians, with a focus on problem-solving, proofs, and historical context. Rich with examples, exercises, and applications, Number Theory illuminates the subject's intrinsic beauty and its significance in fields like cryptography, computer science, and mathematical research.

Product Details :

Genre : Mathematics
Author : Prof. Jyothi M. J.
Publisher : RK Publication
Release : 2024-09-13
File : 282 Pages
ISBN-13 : 9789348020086


Transcendence In Algebra Combinatorics Geometry And Number Theory

eBook Download

BOOK EXCERPT:

This proceedings volume gathers together original articles and survey works that originate from presentations given at the conference Transient Transcendence in Transylvania, held in Brașov, Romania, from May 13th to 17th, 2019. The conference gathered international experts from various fields of mathematics and computer science, with diverse interests and viewpoints on transcendence. The covered topics are related to algebraic and transcendental aspects of special functions and special numbers arising in algebra, combinatorics, geometry and number theory. Besides contributions on key topics from invited speakers, this volume also brings selected papers from attendees.

Product Details :

Genre : Mathematics
Author : Alin Bostan
Publisher : Springer Nature
Release : 2021-11-02
File : 544 Pages
ISBN-13 : 9783030843045


Emerging Applications Of Number Theory

eBook Download

BOOK EXCERPT:

Most people tend to view number theory as the very paradigm of pure mathematics. With the advent of computers, however, number theory has been finding an increasing number of applications in practical settings, such as in cryptography, random number generation, coding theory, and even concert hall acoustics. Yet other applications are still emerging - providing number theorists with some major new areas of opportunity. The 1996 IMA summer program on Emerging Applications of Number Theory was aimed at stimulating further work with some of these newest (and most attractive) applications. Concentration was on number theory's recent links with: (a) wave phenomena in quantum mechanics (more specifically, quantum chaos); and (b) graph theory (especially expander graphs and related spectral theory). This volume contains the contributed papers from that meeting and will be of interest to anyone intrigued by novel applications of modern number-theoretical techniques.

Product Details :

Genre : Mathematics
Author : Dennis A. Hejhal
Publisher : Springer Science & Business Media
Release : 2012-12-06
File : 693 Pages
ISBN-13 : 9781461215448