WELCOME TO THE LIBRARY!!!
What are you looking for Book "Perfectoid Spaces" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
Introduced by Peter Scholze in 2011, perfectoid spaces are a bridge between geometry in characteristic 0 and characteristic $p$, and have been used to solve many important problems, including cases of the weight-monodromy conjecture and the association of Galois representations to torsion classes in cohomology. In recognition of the transformative impact perfectoid spaces have had on the field of arithmetic geometry, Scholze was awarded a Fields Medal in 2018. This book, originating from a series of lectures given at the 2017 Arizona Winter School on perfectoid spaces, provides a broad introduction to the subject. After an introduction with insight into the history and future of the subject by Peter Scholze, Jared Weinstein gives a user-friendly and utilitarian account of the theory of adic spaces. Kiran Kedlaya further develops the foundational material, studies vector bundles on Fargues–Fontaine curves, and introduces diamonds and shtukas over them with a view toward the local Langlands correspondence. Bhargav Bhatt explains the application of perfectoid spaces to comparison isomorphisms in $p$-adic Hodge theory. Finally, Ana Caraiani explains the application of perfectoid spaces to the construction of Galois representations associated to torsion classes in the cohomology of locally symmetric spaces for the general linear group. This book will be an invaluable asset for any graduate student or researcher interested in the theory of perfectoid spaces and their applications.
Product Details :
Genre |
: Mathematics |
Author |
: Bhargav Bhatt |
Publisher |
: American Mathematical Society |
Release |
: 2022-02-04 |
File |
: 297 Pages |
ISBN-13 |
: 9781470465100 |
eBook Download
BOOK EXCERPT:
This book contains selected chapters on perfectoid spaces, their introduction and applications, as invented by Peter Scholze in his Fields Medal winning work. These contributions are presented at the conference on “Perfectoid Spaces” held at the International Centre for Theoretical Sciences, Bengaluru, India, from 9–20 September 2019. The objective of the book is to give an advanced introduction to Scholze’s theory and understand the relation between perfectoid spaces and some aspects of arithmetic of modular (or, more generally, automorphic) forms such as representations mod p, lifting of modular forms, completed cohomology, local Langlands program, and special values of L-functions. All chapters are contributed by experts in the area of arithmetic geometry that will facilitate future research in the direction.
Product Details :
Genre |
: Mathematics |
Author |
: Debargha Banerjee |
Publisher |
: Springer Nature |
Release |
: 2022-04-21 |
File |
: 395 Pages |
ISBN-13 |
: 9789811671210 |
eBook Download
BOOK EXCERPT:
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
Product Details :
Genre |
: Mathematics |
Author |
: Peter Scholze |
Publisher |
: Princeton University Press |
Release |
: 2020-05-26 |
File |
: 261 Pages |
ISBN-13 |
: 9780691202150 |
eBook Download
BOOK EXCERPT:
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
Product Details :
Genre |
: Mathematics |
Author |
: Boyan Sirakov |
Publisher |
: World Scientific |
Release |
: 2019-02-27 |
File |
: 5393 Pages |
ISBN-13 |
: 9789813272897 |
eBook Download
BOOK EXCERPT:
Arithmetic and Geometry presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria—provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings height and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach. The first course, taught by Peter Scholze, contains his recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces. The second course, taught by Umberto Zannier, addresses the famous Pell equation—not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians. The third course, taught by Shou-Wu Zhang, originates in the Chowla–Selberg formula, which was taken up by Gross and Zagier to relate values of the L-function for elliptic curves with the height of Heegner points on the curves. Zhang, X. Yuan, and Wei Zhang prove the Gross–Zagier formula on Shimura curves and verify the Colmez conjecture on average.
Product Details :
Genre |
: Mathematics |
Author |
: Gisbert Wüstholz |
Publisher |
: Princeton University Press |
Release |
: 2019-10-08 |
File |
: 186 Pages |
ISBN-13 |
: 9780691193779 |
eBook Download
BOOK EXCERPT:
This proceedings volume contains articles related to the research presented at the 2019 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning non-abelian aspects This volume contains both original research articles as well as articles that contain both new research as well as survey some of these recent developments.
Product Details :
Genre |
: Mathematics |
Author |
: Bhargav Bhatt |
Publisher |
: Springer Nature |
Release |
: 2023-03-28 |
File |
: 325 Pages |
ISBN-13 |
: 9783031215506 |
eBook Download
BOOK EXCERPT:
A groundbreaking contribution to number theory that unifies classical and modern results This book develops a new theory of p-adic modular forms on modular curves, extending Katz's classical theory to the supersingular locus. The main novelty is to move to infinite level and extend coefficients to period sheaves coming from relative p-adic Hodge theory. This makes it possible to trivialize the Hodge bundle on the infinite-level modular curve by a "canonical differential" that restricts to the Katz canonical differential on the ordinary Igusa tower. Daniel Kriz defines generalized p-adic modular forms as sections of relative period sheaves transforming under the Galois group of the modular curve by weight characters. He introduces the fundamental de Rham period, measuring the position of the Hodge filtration in relative de Rham cohomology. This period can be viewed as a counterpart to Scholze's Hodge-Tate period, and the two periods satisfy a Legendre-type relation. Using these periods, Kriz constructs splittings of the Hodge filtration on the infinite-level modular curve, defining p-adic Maass-Shimura operators that act on generalized p-adic modular forms as weight-raising operators. Through analysis of the p-adic properties of these Maass-Shimura operators, he constructs new p-adic L-functions interpolating central critical Rankin-Selberg L-values, giving analogues of the p-adic L-functions of Katz, Bertolini-Darmon-Prasanna, and Liu-Zhang-Zhang for imaginary quadratic fields in which p is inert or ramified. These p-adic L-functions yield new p-adic Waldspurger formulas at special values.
Product Details :
Genre |
: Mathematics |
Author |
: Daniel Kriz |
Publisher |
: Princeton University Press |
Release |
: 2021-11-09 |
File |
: 280 Pages |
ISBN-13 |
: 9780691216478 |
eBook Download
BOOK EXCERPT:
Leading thinkers in mathematics, philosophy and education offer new insights into the fundamental question: what is a mathematical concept?
Product Details :
Genre |
: Education |
Author |
: Elizabeth de Freitas |
Publisher |
: Cambridge University Press |
Release |
: 2017-06-22 |
File |
: 301 Pages |
ISBN-13 |
: 9781107134638 |
eBook Download
BOOK EXCERPT:
"Number Theory in Quantum Mechanics" is a specialized exploration that bridges the realms of number theory and quantum mechanics. Catering to students, physicists, and researchers in quantum physics, this book investigates the intriguing connections between number theory concepts and quantum phenomena. Covering topics such as quantum states, operators, and wave functions, the book illuminates the mathematical underpinnings that emerge when applying number theory principles to quantum mechanics. With clarity and depth, this book serves as a valuable resource for those intrigued by the intersection of mathematical theory and quantum physics, offering new perspectives on the fundamental nature of quantum systems.
Product Details :
Genre |
: Science |
Author |
: N.B. Singh |
Publisher |
: N.B. Singh |
Release |
: |
File |
: 103 Pages |
ISBN-13 |
: |
eBook Download
BOOK EXCERPT:
Introduced by Peter Scholze in 2011, perfectoid spaces are a bridge between geometry in characteristic 0 and characteristic p, and have been used to solve many important problems, including cases of the weight-monodromy conjecture and the association of Galois representations to torsion classes in cohomology. In recognition of the transformative impact perfectoid spaces have had on the field of arithmetic geometry, Scholze was awarded a Fields Medal in 2018. This book, originating from a series of lectures given at the 2017 Arizona Winter School on perfectoid spaces, provides a broad introduction to the subject. After an introduction with insight into the history and future of the subject by Peter Scholze, Jared Weinstein gives a user-friendly and utilitarian account of the theory of adic spaces. Kiran Kedlaya further develops the foundational material, studies vector bundles on Fargues–Fontaine curves, and introduces diamonds and shtukas over them with a view toward the local Langlands correspondence. Bhargav Bhatt explains the application of perfectoid spaces to comparison isomorphisms in p-adic Hodge theory. Finally, Ana Caraiani explains the application of perfectoid spaces to the construction of Galois representations associated to torsion classes in the cohomology of locally symmetric spaces for the general linear group. This book will be an invaluable asset for any graduate student or researcher interested in the theory of perfectoid spaces and their applications.
Product Details :
Genre |
: Mathematics |
Author |
: Bryden Cais |
Publisher |
: American Mathematical Soc. |
Release |
: 2019-10-01 |
File |
: 313 Pages |
ISBN-13 |
: 9781470450151 |