WELCOME TO THE LIBRARY!!!
What are you looking for Book "Perfectoid Spaces Lectures From The 2017 Arizona Winter School" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
Introduced by Peter Scholze in 2011, perfectoid spaces are a bridge between geometry in characteristic 0 and characteristic $p$, and have been used to solve many important problems, including cases of the weight-monodromy conjecture and the association of Galois representations to torsion classes in cohomology. In recognition of the transformative impact perfectoid spaces have had on the field of arithmetic geometry, Scholze was awarded a Fields Medal in 2018. This book, originating from a series of lectures given at the 2017 Arizona Winter School on perfectoid spaces, provides a broad introduction to the subject. After an introduction with insight into the history and future of the subject by Peter Scholze, Jared Weinstein gives a user-friendly and utilitarian account of the theory of adic spaces. Kiran Kedlaya further develops the foundational material, studies vector bundles on Fargues–Fontaine curves, and introduces diamonds and shtukas over them with a view toward the local Langlands correspondence. Bhargav Bhatt explains the application of perfectoid spaces to comparison isomorphisms in $p$-adic Hodge theory. Finally, Ana Caraiani explains the application of perfectoid spaces to the construction of Galois representations associated to torsion classes in the cohomology of locally symmetric spaces for the general linear group. This book will be an invaluable asset for any graduate student or researcher interested in the theory of perfectoid spaces and their applications.
Product Details :
Genre |
: Mathematics |
Author |
: Bhargav Bhatt |
Publisher |
: American Mathematical Society |
Release |
: 2022-02-04 |
File |
: 297 Pages |
ISBN-13 |
: 9781470465100 |
eBook Download
BOOK EXCERPT:
This book contains selected chapters on perfectoid spaces, their introduction and applications, as invented by Peter Scholze in his Fields Medal winning work. These contributions are presented at the conference on “Perfectoid Spaces” held at the International Centre for Theoretical Sciences, Bengaluru, India, from 9–20 September 2019. The objective of the book is to give an advanced introduction to Scholze’s theory and understand the relation between perfectoid spaces and some aspects of arithmetic of modular (or, more generally, automorphic) forms such as representations mod p, lifting of modular forms, completed cohomology, local Langlands program, and special values of L-functions. All chapters are contributed by experts in the area of arithmetic geometry that will facilitate future research in the direction.
Product Details :
Genre |
: Mathematics |
Author |
: Debargha Banerjee |
Publisher |
: Springer Nature |
Release |
: 2022-04-21 |
File |
: 395 Pages |
ISBN-13 |
: 9789811671210 |
eBook Download
BOOK EXCERPT:
Introduced by Peter Scholze in 2011, perfectoid spaces are a bridge between geometry in characteristic 0 and characteristic p, and have been used to solve many important problems, including cases of the weight-monodromy conjecture and the association of Galois representations to torsion classes in cohomology. In recognition of the transformative impact perfectoid spaces have had on the field of arithmetic geometry, Scholze was awarded a Fields Medal in 2018. This book, originating from a series of lectures given at the 2017 Arizona Winter School on perfectoid spaces, provides a broad introduction to the subject. After an introduction with insight into the history and future of the subject by Peter Scholze, Jared Weinstein gives a user-friendly and utilitarian account of the theory of adic spaces. Kiran Kedlaya further develops the foundational material, studies vector bundles on Fargues–Fontaine curves, and introduces diamonds and shtukas over them with a view toward the local Langlands correspondence. Bhargav Bhatt explains the application of perfectoid spaces to comparison isomorphisms in p-adic Hodge theory. Finally, Ana Caraiani explains the application of perfectoid spaces to the construction of Galois representations associated to torsion classes in the cohomology of locally symmetric spaces for the general linear group. This book will be an invaluable asset for any graduate student or researcher interested in the theory of perfectoid spaces and their applications.
Product Details :
Genre |
: Mathematics |
Author |
: Bryden Cais |
Publisher |
: American Mathematical Soc. |
Release |
: 2019-10-01 |
File |
: 313 Pages |
ISBN-13 |
: 9781470450151 |
eBook Download
BOOK EXCERPT:
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
Product Details :
Genre |
: Mathematics |
Author |
: Peter Scholze |
Publisher |
: Princeton University Press |
Release |
: 2020-05-26 |
File |
: 260 Pages |
ISBN-13 |
: 9780691202099 |
eBook Download
BOOK EXCERPT:
This proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory.
Product Details :
Genre |
: Mathematics |
Author |
: Bhargav Bhatt |
Publisher |
: Springer Nature |
Release |
: 2020-06-15 |
File |
: 325 Pages |
ISBN-13 |
: 9783030438449 |
eBook Download
BOOK EXCERPT:
This book completes the comprehensive introduction to modern algebraic geometry which was started with the introductory volume Algebraic Geometry I: Schemes. It begins by discussing in detail the notions of smooth, unramified and étale morphisms including the étale fundamental group. The main part is dedicated to the cohomology of quasi-coherent sheaves. The treatment is based on the formalism of derived categories which allows an efficient and conceptual treatment of the theory, which is of crucial importance in all areas of algebraic geometry. After the foundations are set up, several more advanced topics are studied, such as numerical intersection theory, an abstract version of the Theorem of Grothendieck-Riemann-Roch, the Theorem on Formal Functions, Grothendieck's algebraization results and a very general version of Grothendieck duality. The book concludes with chapters on curves and on abelian schemes, which serve to develop the basics of the theory of these two important classes of schemes on an advanced level, and at the same time to illustrate the power of the techniques introduced previously. The text contains many exercises that allow the reader to check their comprehension of the text, present further examples or give an outlook on further results.
Product Details :
Genre |
: Mathematics |
Author |
: Ulrich Görtz |
Publisher |
: Springer Nature |
Release |
: 2023-11-22 |
File |
: 877 Pages |
ISBN-13 |
: 9783658430313 |
eBook Download
BOOK EXCERPT:
A detailed and unified treatment of $P$-adic differential equations, from the basic principles to the current frontiers of research.
Product Details :
Genre |
: Mathematics |
Author |
: Kiran Kedlaya |
Publisher |
: Cambridge University Press |
Release |
: 2022-06-09 |
File |
: 517 Pages |
ISBN-13 |
: 9781009123341 |
eBook Download
BOOK EXCERPT:
This proceedings volume contains articles related to the research presented at the 2019 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning non-abelian aspects This volume contains both original research articles as well as articles that contain both new research as well as survey some of these recent developments.
Product Details :
Genre |
: Mathematics |
Author |
: Bhargav Bhatt |
Publisher |
: Springer Nature |
Release |
: 2023-03-28 |
File |
: 325 Pages |
ISBN-13 |
: 9783031215506 |