Programming Projects In C For Students Of Engineering Science And Mathematics

eBook Download

BOOK EXCERPT:

Like a pianist who practices from a book of Ÿtudes, readers of Programming Projects in C for Students of Engineering, Science, and Mathematics will learn by doing. Written as a tutorial on how to think about, organize, and implement programs in scientific computing, this book achieves its goal through an eclectic and wide-ranging collection of projects. Each project presents a problem and an algorithm for solving it. The reader is guided through implementing the algorithm in C and compiling and testing the results. It is not necessary to carry out the projects in sequential order. The projects?contain suggested algorithms and partially completed programs for implementing them to enable the reader to exercise and develop skills in scientific computing;?require only a working knowledge of undergraduate multivariable calculus, differential equations, and linear algebra; and?are written in platform-independent standard C, and the Unix command-line is used to illustrate compilation and execution. The primary audience of this book is graduate students in mathematics, engineering, and the sciences. The book will also be of interest to advanced undergraduates and working professionals who wish to exercise and hone their skills in programming mathematical algorithms in C. A working knowledge of the C programming language is assumed.

Product Details :

Genre : Computers
Author : Rouben Rostamian
Publisher : SIAM
Release : 2014-09-03
File : 390 Pages
ISBN-13 : 9781611973495


Mathematical Foundations Of Finite Elements And Iterative Solvers

eBook Download

BOOK EXCERPT:

“This book combines an updated look, at an advanced level, of the mathematical theory of the finite element method (including some important recent developments), and a presentation of many of the standard iterative methods for the numerical solution of the linear system of equations that results from finite element discretization, including saddle point problems arising from mixed finite element approximation. For the reader with some prior background in the subject, this text clarifies the importance of the essential ideas and provides a deeper understanding of how the basic concepts fit together.” — Richard S. Falk, Rutgers University “Students of applied mathematics, engineering, and science will welcome this insightful and carefully crafted introduction to the mathematics of finite elements and to algorithms for iterative solvers. Concise, descriptive, and entertaining, the text covers all of the key mathematical ideas and concepts dealing with finite element approximations of problems in mechanics and physics governed by partial differential equations while interweaving basic concepts on Sobolev spaces and basic theorems of functional analysis presented in an effective tutorial style.” — J. Tinsley Oden, The University of Texas at Austin This textbook describes the mathematical principles of the finite element method, a technique that turns a (linear) partial differential equation into a discrete linear system, often amenable to fast linear algebra. Reflecting the author’s decade of experience in the field, Mathematical Foundations of Finite Elements and Iterative Solvers examines the crucial interplay between analysis, discretization, and computations in modern numerical analysis; furthermore, it recounts historical developments leading to current state-of-the-art techniques. While self-contained, this textbook provides a clear and in-depth discussion of several topics, including elliptic problems, continuous Galerkin methods, iterative solvers, advection-diffusion problems, and saddle point problems. Accessible to readers with a beginning background in functional analysis and linear algebra, this text can be used in graduate-level courses on advanced numerical analysis, data science, numerical optimization, and approximation theory. Professionals in numerical analysis and finite element methods will also find the book of interest.

Product Details :

Genre : Mathematics
Author : SCI085000
Publisher : SIAM
Release : 2022-06-27
File : 186 Pages
ISBN-13 : 9781611977097


Mathematical Theory Of Finite Elements

eBook Download

BOOK EXCERPT:

This book discusses the foundations of the mathematical theory of finite element methods. The focus is on two subjects: the concept of discrete stability, and the theory of conforming elements forming the exact sequence. Both coercive and noncoercive problems are discussed.. Following the historical path of development, the author covers the Ritz and Galerkin methods to Mikhlin’s theory, followed by the Lax–Milgram theorem and Cea’s lemma to the Babuska theorem and Brezzi’s theory. He finishes with an introduction to the discontinuous Petrov–Galerkin (DPG) method with optimal test functions. Based on the author’s personal lecture notes for a popular version of his graduate course on mathematical theory of finite elements, the book includes a unique exposition of the concept of discrete stability and the means to guarantee it, a coherent presentation of finite elements forming the exact grad-curl-div sequence, and an introduction to the DPG method. Intended for graduate students in computational science, engineering, and mathematics programs, Mathematical Theory of Finite Elements is also appropriate for graduate mathematics and mathematically oriented engineering students. Instructors will find the book useful for courses in real analysis, functional analysis, energy (Sobolev) spaces, and Hilbert space methods for PDEs.

Product Details :

Genre : Mathematics
Author : Leszek F. Demkowicz
Publisher : SIAM
Release : 2023-09-22
File : 217 Pages
ISBN-13 : 9781611977738


Uncertainty Quantification

eBook Download

BOOK EXCERPT:

Uncertainty quantification serves a fundamental role when establishing the predictive capabilities of simulation models. This book provides a comprehensive and unified treatment of the mathematical, statistical, and computational theory and methods employed to quantify uncertainties associated with models from a wide range of applications. Expanded and reorganized, the second edition includes advances in the field and provides a comprehensive sensitivity analysis and uncertainty quantification framework for models from science and engineering. It contains new chapters on random field representations, observation models, parameter identifiability and influence, active subspace analysis, and statistical surrogate models, and a completely revised chapter on local sensitivity analysis. Other updates to the second edition are the inclusion of over 100 exercises and many new examples — several of which include data — and UQ Crimes listed throughout the text to identify common misconceptions and guide readers entering the field. Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition is intended for advanced undergraduate and graduate students as well as researchers in mathematics, statistics, engineering, physical and biological sciences, operations research, and computer science. Readers are assumed to have a basic knowledge of probability, linear algebra, differential equations, and introductory numerical analysis. The book can be used as a primary text for a one-semester course on sensitivity analysis and uncertainty quantification or as a supplementary text for courses on surrogate and reduced-order model construction and parameter identifiability analysis.

Product Details :

Genre : Mathematics
Author : Ralph C. Smith
Publisher : SIAM
Release : 2024-09-13
File : 571 Pages
ISBN-13 : 9781611977844


A Ramble Through Probability

eBook Download

BOOK EXCERPT:

Measure theory and measure-theoretic probability are fascinating subjects. Proofs describing profound ways to reason lead to results that are frequently startling, beautiful, and useful. Measure theory and probability also play roles in the development of pure and applied mathematics, statistics, engineering, physics, and finance. Indeed, it is difficult to overstate their importance in the quantitative disciplines. This book traces an eclectic path through the fundamentals of the topic to make the material accessible to a broad range of students. A Ramble through Probability: How I Learned to Stop Worrying and Love Measure Theory brings together the key elements and applications in a unified presentation aimed at developing intuition; contains an extensive collection of examples that illustrate, explain, and apply the theories; and is supplemented with videos containing commentary and explanations of select proofs on an ancillary website. This book is intended for graduate students in engineering, mathematics, science, and statistics. Researchers who need to use probability theory will also find it useful. It is appropriate for graduate-level courses on measure theory and/or probability theory.

Product Details :

Genre : Mathematics
Author : Samopriya Basu
Publisher : SIAM
Release : 2024-03-06
File : 620 Pages
ISBN-13 : 9781611977820


Nonlocal Integral Equation Continuum Models

eBook Download

BOOK EXCERPT:

The book presents the state of the art of nonlocal modeling and discretization and provides a practical introduction to nonlocal modeling for readers who are not familiar with such models. These models have recently become a viable alternative to classical partial differential equations when the latter are unable to capture effects such as discontinuities and multiscale behavior in a system of interest. Because of their integral nature, nonlocal operators allow for the relaxation of regularity requirements on the solution and thus allow for the capture of multiscale effects, the result of which is their successful use in many scientific and engineering applications. The book also provides a thorough analysis and numerical treatment of nonstandard nonlocal models, focusing on both well-known and nonstandard interaction neighborhoods. In addition, the book delivers an extensive practical treatment of the implementation of discretization strategies via finite element methods. Numerous figures are provided as concrete examples to illustrate both the analytic and computational results. Nonlocal Integral Equation Continuum Models: Nonstandard Interaction Neighborhoods and Finite Element Discretizations is intended for mathematical and application researchers interested in alternatives to using partial differential equation models that better describe the phenomena they are interested in. The book will also be of use to computational scientists and engineers who need to make sense of how to use available software, improve existing software, or develop new software tailored to their application interests.

Product Details :

Genre : Mathematics
Author : Marta D'Elia
Publisher : SIAM
Release : 2024-09-12
File : 187 Pages
ISBN-13 : 9781611978056


Advanced Reduced Order Methods And Applications In Computational Fluid Dynamics

eBook Download

BOOK EXCERPT:

Reduced order modeling is an important, growing field in computational science and engineering, and this is the first book to address the subject in relation to computational fluid dynamics. It focuses on complex parametrization of shapes for their optimization and includes recent developments in advanced topics such as turbulence, stability of flows, inverse problems, optimization, and flow control, as well as applications. This book will be of interest to researchers and graduate students in the field of reduced order modeling.

Product Details :

Genre : Mathematics
Author : Gianluigi Rozza
Publisher : SIAM
Release : 2022-11-21
File : 501 Pages
ISBN-13 : 9781611977257


Vector Extrapolation Methods With Applications

eBook Download

BOOK EXCERPT:

An important problem that arises in different disciplines of science and engineering is that of computing limits of sequences of vectors of very large dimension. Such sequences arise, for example, in the numerical solution of systems of linear and nonlinear equations by fixed-point iterative methods, and their limits are simply the required solutions to these systems. The convergence of these sequences, which is very slow in many cases, can be accelerated successfully by using suitable vector extrapolation methods. Vector Extrapolation Methods with Applications is the first book fully dedicated to the subject of vector extrapolation methods. It is a self-contained, up-to-date, and state-of-the-art reference on the theory and practice of the most useful methods. It covers all aspects of the subject, including development of the methods, their convergence study, numerically stable algorithms for their implementation, and their various applications. It also provides complete proofs in most places. As an interesting application, the author shows how these methods give rise to rational approximation procedures for vector-valued functions in the complex plane, a subject of importance in model reduction problems among others. This book is intended for numerical analysts, applied mathematicians, and computational scientists and engineers in fields such as computational fluid dynamics, structures, and mechanical and electrical engineering, to name a few. Since it provides complete proofs in most places, it can also serve as a textbook in courses on acceleration of convergence of iterative vector processes, for example.

Product Details :

Genre : Science
Author : Avram Sidi
Publisher : SIAM
Release : 2017-09-26
File : 421 Pages
ISBN-13 : 9781611974966


A First Course In Numerical Methods

eBook Download

BOOK EXCERPT:

Offers students a practical knowledge of modern techniques in scientific computing.

Product Details :

Genre : Mathematics
Author : Uri M. Ascher
Publisher : SIAM
Release : 2011-07-14
File : 574 Pages
ISBN-13 : 9780898719987


Finite Element Methods For Computational Fluid Dynamics

eBook Download

BOOK EXCERPT:

This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory. Finite Element Methods for Computational Fluid Dynamics: A Practical Guide explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. It comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov?Galerkin approximations, Taylor?Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes, and covers Petrov?Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problem. The book also describes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.

Product Details :

Genre : Science
Author : Dmitri Kuzmin
Publisher : SIAM
Release : 2014-12-18
File : 321 Pages
ISBN-13 : 9781611973617