Regularized Approximate Policy Iteration Using Kernel For On Line Reinforcement Learning

eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author : Gennaro Esposito, PhD
Publisher : gennaro esposito
Release : 2015-06-30
File : 196 Pages
ISBN-13 :


Artificial Intelligence Theories Models And Applications

eBook Download

BOOK EXCERPT:

This book constitutes the proceedings of the 7th Hellenic Conference on Artificial Intelligence, SETN 2012, held in Lamia, Greece, in May 2012. The 47 contributions included in this volume were carefully reviewed and selected from 81 submissions. They deal with emergent topics of artificial intelligence and come from the SETN main conference as well as from the following special sessions on advancing translational biological research through the incorporation of artificial intelligence methodologies; artificial intelligence in bioinformatics; intelligent annotation of digital content; intelligent, affective, and natural interfaces; and unified multimedia knowledge representation and processing.

Product Details :

Genre : Computers
Author : Ilias Maglogiannis
Publisher : Springer
Release : 2012-05-26
File : 399 Pages
ISBN-13 : 9783642304484


An Introduction To Artificial Intelligence Based On Reproducing Kernel Hilbert Spaces

eBook Download

BOOK EXCERPT:

This textbook provides an in-depth exploration of statistical learning with reproducing kernels, an active area of research that can shed light on trends associated with deep neural networks. The author demonstrates how the concept of reproducing kernel Hilbert Spaces (RKHS), accompanied with tools from regularization theory, can be effectively used in the design and justification of kernel learning algorithms, which can address problems in several areas of artificial intelligence. Also provided is a detailed description of two biomedical applications of the considered algorithms, demonstrating how close the theory is to being practically implemented. Among the book’s several unique features is its analysis of a large class of algorithms of the Learning Theory that essentially comprise every linear regularization scheme, including Tikhonov regularization as a specific case. It also provides a methodology for analyzing not only different supervised learning problems, such as regression or ranking, but also different learning scenarios, such as unsupervised domain adaptation or reinforcement learning. By analyzing these topics using the same theoretical framework, rather than approaching them separately, their presentation is streamlined and made more approachable. An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces is an ideal resource for graduate and postgraduate courses in computational mathematics and data science.

Product Details :

Genre : Mathematics
Author : Sergei Pereverzyev
Publisher : Springer Nature
Release : 2022-05-17
File : 160 Pages
ISBN-13 : 9783030983161


Recent Advances In Reinforcement Learning

eBook Download

BOOK EXCERPT:

Inthesummerof2008,reinforcementlearningresearchersfromaroundtheworld gathered in the north of France for a week of talks and discussions on reinfor- ment learning, on how it could be made more e?cient, applied to a broader range of applications, and utilized at more abstract and symbolic levels. As a participant in this 8th European Workshop on Reinforcement Learning, I was struck by both the quality and quantity of the presentations. There were four full days of short talks, over 50 in all, far more than there have been at any p- vious meeting on reinforcement learning in Europe, or indeed, anywhere else in the world. There was an air of excitement as substantial progress was reported in many areas including Computer Go, robotics, and ?tted methods. Overall, the work reported seemed to me to be an excellent, broad, and representative sample of cutting-edge reinforcement learning research. Some of the best of it is collected and published in this volume. The workshopandthe paperscollectedhere provideevidence thatthe ?eldof reinforcement learning remains vigorous and varied. It is appropriate to re?ect on some of the reasons for this. One is that the ?eld remains focused on a pr- lem — sequential decision making — without prejudice as to solution methods. Another is the existence of a common terminology and body of theory.

Product Details :

Genre : Computers
Author : Sertan Girgin
Publisher : Springer
Release : 2008-11-27
File : 292 Pages
ISBN-13 : 9783540897224


Artificial Intelligence Research And Development

eBook Download

BOOK EXCERPT:

This book presents 34 original papers accepted for presentation at the 17th International Conference of the Catalan Association for Artificial Intelligence (CCIA 2014), held in October 2014 in Barcelona, Spain. The Catalan Association for Artificial Intelligence (ACIA), was created in 1994 as a non-profit association to promote cooperation among researchers from the Catalan-speaking artificial intelligence research community. Conferences are now held annually throughout the Catalan-speaking countries. The papers in this volume have been organized around different topics, providing a representative sample of the current state-of-the-art in the Catalan artificial intelligence community and of the collaboration between ACIA members and the worldwide AI community. The book will be of interest to all those working in the field of artificial intelligence.

Product Details :

Genre : Computers
Author : L. Museros
Publisher : IOS Press
Release : 2014-10-10
File : 308 Pages
ISBN-13 : 9781614994527


Reinforcement Learning

eBook Download

BOOK EXCERPT:

Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

Product Details :

Genre : Technology & Engineering
Author : Marco Wiering
Publisher : Springer Science & Business Media
Release : 2012-03-05
File : 653 Pages
ISBN-13 : 9783642276453


Recent Advances In Reinforcement Learning

eBook Download

BOOK EXCERPT:

This book constitutes revised and selected papers of the 9th European Workshop on Reinforcement Learning, EWRL 2011, which took place in Athens, Greece in September 2011. The papers presented were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections online reinforcement learning, learning and exploring MDPs, function approximation methods for reinforcement learning, macro-actions in reinforcement learning, policy search and bounds, multi-task and transfer reinforcement learning, multi-agent reinforcement learning, apprenticeship and inverse reinforcement learning and real-world reinforcement learning.

Product Details :

Genre : Computers
Author : Scott Sanner
Publisher : Springer
Release : 2012-05-19
File : 357 Pages
ISBN-13 : 9783642299469


Intelligent Computing Methodologies

eBook Download

BOOK EXCERPT:

This book - in conjunction with the double volume set LNCS 9771 and LNCS 9772 - constitutes the refereed proceedings of the 12th International Conference on Intelligent Computing, ICIC 2016, held in Lanzhou, China, in August 2016. The 221 full papers and 15 short papers of the three proceedings volumes were carefully reviewed and selected from 639 submissions. The papers are organized in topical sections such as signal processing and image processing; information security, knowledge discovery, and data mining; systems biology and intelligent computing in computational biology; intelligent computing in scheduling; information security; advances in swarm intelligence: algorithms and applications; machine learning and data analysis for medical and engineering applications; evolutionary computation and learning; independent component analysis; compressed sensing, sparse coding; social computing; neural networks; nature inspired computing and optimization; genetic algorithms; signal processing; pattern recognition; biometrics recognition; image processing; information security; virtual reality and human-computer interaction; healthcare informatics theory and methods; artificial bee colony algorithms; differential evolution; memetic algorithms; swarm intelligence and optimization; soft computing; protein structure and function prediction; advances in swarm intelligence: algorithms and applications; optimization, neural network, and signal processing; biomedical informatics and image processing; machine learning; knowledge discovery and natural language processing; nature inspired computing and optimization; intelligent control and automation; intelligent data analysis and prediction; computer vision; knowledge representation and expert system; bioinformatics.

Product Details :

Genre : Computers
Author : De-Shuang Huang
Publisher : Springer
Release : 2016-07-11
File : 879 Pages
ISBN-13 : 9783319422978


Markov Decision Processes In Artificial Intelligence

eBook Download

BOOK EXCERPT:

Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as reinforcement learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in artificial intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, reinforcement learning, partially observable MDPs, Markov games and the use of non-classical criteria). It then presents more advanced research trends in the field and gives some concrete examples using illustrative real life applications.

Product Details :

Genre : Technology & Engineering
Author : Olivier Sigaud
Publisher : John Wiley & Sons
Release : 2013-03-04
File : 367 Pages
ISBN-13 : 9781118620106



eBook Download

BOOK EXCERPT:

Product Details :

Genre :
Author :
Publisher : IOS Press
Release :
File : 7289 Pages
ISBN-13 :