Continuous Multivariate Distributions Volume 1

eBook Download

BOOK EXCERPT:

Continuous Multivariate Distributions, Volume 1, Second Edition provides a remarkably comprehensive, self-contained resource for this critical statistical area. It covers all significant advances that have occurred in the field over the past quarter century in the theory, methodology, inferential procedures, computational and simulational aspects, and applications of continuous multivariate distributions. In-depth coverage includes MV systems of distributions, MV normal, MV exponential, MV extreme value, MV beta, MV gamma, MV logistic, MV Liouville, and MV Pareto distributions, as well as MV natural exponential families, which have grown immensely since the 1970s. Each distribution is presented in its own chapter along with descriptions of real-world applications gleaned from the current literature on continuous multivariate distributions and their applications.

Product Details :

Genre : Mathematics
Author : Samuel Kotz
Publisher : John Wiley & Sons
Release : 2004-04-05
File : 752 Pages
ISBN-13 : 9780471654032


Continuous Multivariate Distributions Volume 1

eBook Download

BOOK EXCERPT:

Seit dem Erscheinen der ersten Auflage dieses Werkes (1972) hat sich das Gebiet der kontinuierlichen multivariaten Verteilungen rasch weiterentwickelt. Moderne Anwendungsfelder sind die Erforschung von Hochwasser, Erdbeben, Regenfällen und Stürmen. Entsprechend wurde das Buch überarbeitet und erweitert: Nunmehr zwei Bände beschreiben eine Vielzahl multivariater Verteilungsmodelle anhand zahlreicher Beispiele. (05/00)

Product Details :

Genre : Mathematics
Author : Samuel Kotz
Publisher : John Wiley & Sons
Release : 2019-01-17
File : 752 Pages
ISBN-13 : 9780471183877


Modes Of Parametric Statistical Inference

eBook Download

BOOK EXCERPT:

A fascinating investigation into the foundations of statistical inference This publication examines the distinct philosophical foundations of different statistical modes of parametric inference. Unlike many other texts that focus on methodology and applications, this book focuses on a rather unique combination of theoretical and foundational aspects that underlie the field of statistical inference. Readers gain a deeper understanding of the evolution and underlying logic of each mode as well as each mode's strengths and weaknesses. The book begins with fascinating highlights from the history of statistical inference. Readers are given historical examples of statistical reasoning used to address practical problems that arose throughout the centuries. Next, the book goes on to scrutinize four major modes of statistical inference: * Frequentist * Likelihood * Fiducial * Bayesian The author provides readers with specific examples and counterexamples of situations and datasets where the modes yield both similar and dissimilar results, including a violation of the likelihood principle in which Bayesian and likelihood methods differ from frequentist methods. Each example is followed by a detailed discussion of why the results may have varied from one mode to another, helping the reader to gain a greater understanding of each mode and how it works. Moreover, the author provides considerable mathematical detail on certain points to highlight key aspects of theoretical development. The author's writing style and use of examples make the text clear and engaging. This book is fundamental reading for graduate-level students in statistics as well as anyone with an interest in the foundations of statistics and the principles underlying statistical inference, including students in mathematics and the philosophy of science. Readers with a background in theoretical statistics will find the text both accessible and absorbing.

Product Details :

Genre : Mathematics
Author : Seymour Geisser
Publisher : John Wiley & Sons
Release : 2006-01-27
File : 218 Pages
ISBN-13 : 9780471743125


Latent Curve Models

eBook Download

BOOK EXCERPT:

An effective technique for data analysis in the social sciences The recent explosion in longitudinal data in the social sciences highlights the need for this timely publication. Latent Curve Models: A Structural Equation Perspective provides an effective technique to analyze latent curve models (LCMs). This type of data features random intercepts and slopes that permit each case in a sample to have a different trajectory over time. Furthermore, researchers can include variables to predict the parameters governing these trajectories. The authors synthesize a vast amount of research and findings and, at the same time, provide original results. The book analyzes LCMs from the perspective of structural equation models (SEMs) with latent variables. While the authors discuss simple regression-based procedures that are useful in the early stages of LCMs, most of the presentation uses SEMs as a driving tool. This cutting-edge work includes some of the authors' recent work on the autoregressive latent trajectory model, suggests new models for method factors in multiple indicators, discusses repeated latent variable models, and establishes the identification of a variety of LCMs. This text has been thoroughly class-tested and makes extensive use of pedagogical tools to aid readers in mastering and applying LCMs quickly and easily to their own data sets. Key features include: Chapter introductions and summaries that provide a quick overview of highlights Empirical examples provided throughout that allow readers to test their newly found knowledge and discover practical applications Conclusions at the end of each chapter that stress the essential points that readers need to understand for advancement to more sophisticated topics Extensive footnoting that points the way to the primary literature for more information on particular topics With its emphasis on modeling and the use of numerous examples, this is an excellent book for graduate courses in latent trajectory models as well as a supplemental text for courses in structural modeling. This book is an excellent aid and reference for researchers in quantitative social and behavioral sciences who need to analyze longitudinal data.

Product Details :

Genre : Mathematics
Author : Kenneth A. Bollen
Publisher : John Wiley & Sons
Release : 2006-01-03
File : 308 Pages
ISBN-13 : 9780471746089


Statistical Methods For The Analysis Of Biomedical Data

eBook Download

BOOK EXCERPT:

The new edition adds a chapter on multiple linear regression in biomedical research, with sections including the multiple linear regressions model and least squares; the ANOVA table, parameter estimates, and confidence intervals; partial f-tests; polynomial regression; and analysis of covariance. * Organized by problem rather than method, so it guides readers to the correct technique for solving the problem at hand.

Product Details :

Genre : Medical
Author : Robert F. Woolson
Publisher : John Wiley & Sons
Release : 2002-05-23
File : 726 Pages
ISBN-13 : 9780471394051


The Statistical Analysis Of Failure Time Data

eBook Download

BOOK EXCERPT:

* Contains additional discussion and examples on left truncation as well as material on more general censoring and truncation patterns. * Introduces the martingale and counting process formulation swil lbe in a new chapter. * Develops multivariate failure time data in a separate chapter and extends the material on Markov and semi Markov formulations. * Presents new examples and applications of data analysis.

Product Details :

Genre : Mathematics
Author : John D. Kalbfleisch
Publisher : John Wiley & Sons
Release : 2002-09-09
File : 462 Pages
ISBN-13 : 9780471363576


Theoretical Foundations Of Functional Data Analysis With An Introduction To Linear Operators

eBook Download

BOOK EXCERPT:

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.

Product Details :

Genre : Mathematics
Author : Tailen Hsing
Publisher : John Wiley & Sons
Release : 2015-03-16
File : 368 Pages
ISBN-13 : 9781118762561


Methodological Developments In Data Linkage

eBook Download

BOOK EXCERPT:

A comprehensive compilation of new developments in data linkage methodology The increasing availability of large administrative databases has led to a dramatic rise in the use of data linkage, yet the standard texts on linkage are still those which describe the seminal work from the 1950-60s, with some updates. Linkage and analysis of data across sources remains problematic due to lack of discriminatory and accurate identifiers, missing data and regulatory issues. Recent developments in data linkage methodology have concentrated on bias and analysis of linked data, novel approaches to organising relationships between databases and privacy-preserving linkage. Methodological Developments in Data Linkage brings together a collection of contributions from members of the international data linkage community, covering cutting edge methodology in this field. It presents opportunities and challenges provided by linkage of large and often complex datasets, including analysis problems, legal and security aspects, models for data access and the development of novel research areas. New methods for handling uncertainty in analysis of linked data, solutions for anonymised linkage and alternative models for data collection are also discussed. Key Features: Presents cutting edge methods for a topic of increasing importance to a wide range of research areas, with applications to data linkage systems internationally Covers the essential issues associated with data linkage today Includes examples based on real data linkage systems, highlighting the opportunities, successes and challenges that the increasing availability of linkage data provides Novel approach incorporates technical aspects of both linkage, management and analysis of linked data This book will be of core interest to academics, government employees, data holders, data managers, analysts and statisticians who use administrative data. It will also appeal to researchers in a variety of areas, including epidemiology, biostatistics, social statistics, informatics, policy and public health.

Product Details :

Genre : Medical
Author : Katie Harron
Publisher : John Wiley & Sons
Release : 2015-09-22
File : 288 Pages
ISBN-13 : 9781119072461


Bayesian Networks

eBook Download

BOOK EXCERPT:

Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include: An introduction to Dirichlet Distribution, Exponential Families and their applications. A detailed description of learning algorithms and Conditional Gaussian Distributions using Junction Tree methods. A discussion of Pearl's intervention calculus, with an introduction to the notion of see and do conditioning. All concepts are clearly defined and illustrated with examples and exercises. Solutions are provided online. This book will prove a valuable resource for postgraduate students of statistics, computer engineering, mathematics, data mining, artificial intelligence, and biology. Researchers and users of comparable modelling or statistical techniques such as neural networks will also find this book of interest.

Product Details :

Genre : Mathematics
Author : Timo Koski
Publisher : John Wiley & Sons
Release : 2011-08-26
File : 275 Pages
ISBN-13 : 9781119964957


Batch Effects And Noise In Microarray Experiments

eBook Download

BOOK EXCERPT:

Batch Effects and Noise in Microarray Experiments: Sources and Solutions looks at the issue of technical noise and batch effects in microarray studies and illustrates how to alleviate such factors whilst interpreting the relevant biological information. Each chapter focuses on sources of noise and batch effects before starting an experiment, with examples of statistical methods for detecting, measuring, and managing batch effects within and across datasets provided online. Throughout the book the importance of standardization and the value of standard operating procedures in the development of genomics biomarkers is emphasized. Key Features: A thorough introduction to Batch Effects and Noise in Microrarray Experiments. A unique compilation of review and research articles on handling of batch effects and technical and biological noise in microarray data. An extensive overview of current standardization initiatives. All datasets and methods used in the chapters, as well as colour images, are available on www.the-batch-effect-book.org, so that the data can be reproduced. An exciting compilation of state-of-the-art review chapters and latest research results, which will benefit all those involved in the planning, execution, and analysis of gene expression studies.

Product Details :

Genre : Science
Author : Andreas Scherer
Publisher : John Wiley & Sons
Release : 2009-11-03
File : 272 Pages
ISBN-13 : 0470685999