WELCOME TO THE LIBRARY!!!
What are you looking for Book "Iterative Methods For Large Linear Systems" ? Click "Read Now PDF" / "Download", Get it for FREE, Register 100% Easily. You can read all your books for as long as a month for FREE and will get the latest Books Notifications. SIGN UP NOW!
eBook Download
BOOK EXCERPT:
Iterative Methods for Large Linear Systems contains a wide spectrum of research topics related to iterative methods, such as searching for optimum parameters, using hierarchical basis preconditioners, utilizing software as a research tool, and developing algorithms for vector and parallel computers. This book provides an overview of the use of iterative methods for solving sparse linear systems, identifying future research directions in the mainstream of modern scientific computing with an eye to contributions of the past, present, and future. Different iterative algorithms that include the successive overrelaxation (SOR) method, symmetric and unsymmetric SOR methods, local (ad-hoc) SOR scheme, and alternating direction implicit (ADI) method are also discussed. This text likewise covers the block iterative methods, asynchronous iterative procedures, multilevel methods, adaptive algorithms, and domain decomposition algorithms. This publication is a good source for mathematicians and computer scientists interested in iterative methods for large linear systems.
Product Details :
Genre |
: Mathematics |
Author |
: David R. Kincaid |
Publisher |
: Academic Press |
Release |
: 2014-05-10 |
File |
: 350 Pages |
ISBN-13 |
: 9781483260204 |
eBook Download
BOOK EXCERPT:
Table of contents
Product Details :
Genre |
: Mathematics |
Author |
: H. A. van der Vorst |
Publisher |
: Cambridge University Press |
Release |
: 2003-04-17 |
File |
: 242 Pages |
ISBN-13 |
: 0521818281 |
eBook Download
BOOK EXCERPT:
Since the first edition of this book was published in 1996, tremendous progress has been made in the scientific and engineering disciplines regarding the use of iterative methods for linear systems. The size and complexity of the new generation of linear and nonlinear systems arising in typical applications has grown. Solving the three-dimensional models of these problems using direct solvers is no longer effective. At the same time, parallel computing has penetrated these application areas as it became less expensive and standardized. Iterative methods are easier than direct solvers to implement on parallel computers but require approaches and solution algorithms that are different from classical methods. Iterative Methods for Sparse Linear Systems, Second Edition gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. These equations can number in the millions and are sparse in the sense that each involves only a small number of unknowns. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.
Product Details :
Genre |
: Mathematics |
Author |
: Yousef Saad |
Publisher |
: SIAM |
Release |
: 2003-01-01 |
File |
: 546 Pages |
ISBN-13 |
: 0898718007 |
eBook Download
BOOK EXCERPT:
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.
Product Details :
Genre |
: Mathematics |
Author |
: Daniele Bertaccini |
Publisher |
: CRC Press |
Release |
: 2018-02-19 |
File |
: 321 Pages |
ISBN-13 |
: 9781351649612 |
eBook Download
BOOK EXCERPT:
Much recent research has concentrated on the efficient solution of large sparse or structured linear systems using iterative methods. A language loaded with acronyms for a thousand different algorithms has developed, and it is often difficult even for specialists to identify the basic principles involved. Here is a book that focuses on the analysis of iterative methods. The author includes the most useful algorithms from a practical point of view and discusses the mathematical principles behind their derivation and analysis. Several questions are emphasized throughout: Does the method converge? If so, how fast? Is it optimal, among a certain class? If not, can it be shown to be near-optimal? The answers are presented clearly, when they are known, and remaining important open questions are laid out for further study. Greenbaum includes important material on the effect of rounding errors on iterative methods that has not appeared in other books on this subject. Additional important topics include a discussion of the open problem of finding a provably near-optimal short recurrence for non-Hermitian linear systems; the relation of matrix properties such as the field of values and the pseudospectrum to the convergence rate of iterative methods; comparison theorems for preconditioners and discussion of optimal preconditioners of specified forms; introductory material on the analysis of incomplete Cholesky, multigrid, and domain decomposition preconditioners, using the diffusion equation and the neutron transport equation as example problems. A small set of recommended algorithms and implementations is included.
Product Details :
Genre |
: Mathematics |
Author |
: Anne Greenbaum |
Publisher |
: SIAM |
Release |
: 1997-01-01 |
File |
: 235 Pages |
ISBN-13 |
: 1611970938 |
eBook Download
BOOK EXCERPT:
Iterative Solution of Large Linear Systems describes the systematic development of a substantial portion of the theory of iterative methods for solving large linear systems, with emphasis on practical techniques. The focal point of the book is an analysis of the convergence properties of the successive overrelaxation (SOR) method as applied to a linear system where the matrix is "consistently ordered". Comprised of 18 chapters, this volume begins by showing how the solution of a certain partial differential equation by finite difference methods leads to a large linear system with a sparse matrix. The next chapter reviews matrix theory and the properties of matrices, as well as several theorems of matrix theory without proof. A number of iterative methods, including the SOR method, are then considered. Convergence theorems are also given for various iterative methods under certain assumptions on the matrix A of the system. Subsequent chapters deal with the eigenvalues of the SOR method for consistently ordered matrices; the optimum relaxation factor; nonstationary linear iterative methods; and semi-iterative methods. This book will be of interest to students and practitioners in the fields of computer science and applied mathematics.
Product Details :
Genre |
: Mathematics |
Author |
: David M. Young |
Publisher |
: Elsevier |
Release |
: 2014-05-10 |
File |
: 599 Pages |
ISBN-13 |
: 9781483274133 |
eBook Download
BOOK EXCERPT:
The problem of solving large, sparse, linear systems of algebraic equations is vital in scientific computing, even for applications originating from quite different fields. A Survey of Preconditioned Iterative Methods presents an up to date overview of iterative methods for numerical solution of such systems. Typically, the methods considered are w
Product Details :
Genre |
: Mathematics |
Author |
: Are Magnus Bruaset |
Publisher |
: Routledge |
Release |
: 2018-12-13 |
File |
: 180 Pages |
ISBN-13 |
: 9781351469364 |
eBook Download
BOOK EXCERPT:
Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.
Product Details :
Genre |
: Mathematics |
Author |
: Gene H. Golub |
Publisher |
: JHU Press |
Release |
: 1996-10-15 |
File |
: 734 Pages |
ISBN-13 |
: 0801854148 |
eBook Download
BOOK EXCERPT:
This IMA Volume in Mathematics and its Applications RECENT ADVANCES IN ITERATIVE METHODS is based on the proceedings of a workshop that was an integral part of the 1991-92 IMA program on "Applied Linear Algebra. " Large systems of matrix equations arise frequently in applications and they have the prop erty that they are sparse and/or structured. The purpose of this workshop was to bring together researchers in numerical analysis and various ap plication areas to discuss where such problems arise and possible meth ods of solution. The last two days of the meeting were a celebration dedicated to Gene Golub on the occasion of his sixtieth birthday, with the program arranged by Jack Dongarra and Paul van Dooren. We are grateful to Richard Brualdi, George Cybenko, Alan George, Gene Golub, Mitchell Luskin, and Paul Van Dooren for planning and implementing the year-long program. We especially thank Gene Golub, Anne Greenbaum, and Mitchell Luskin for organizing this workshop and editing the proceed ings. The financial support of the National Science Foundation and the Min nesota Supercomputer Institute made the workshop possible. A vner Friedman Willard Miller, Jr. xi PREFACE The solution of very large linear algebra problems is an integral part of many scientific computations.
Product Details :
Genre |
: Mathematics |
Author |
: Gene Golub |
Publisher |
: Springer Science & Business Media |
Release |
: 2012-12-06 |
File |
: 234 Pages |
ISBN-13 |
: 9781461393535 |
eBook Download
BOOK EXCERPT:
These proceedings collect the major part of the lectures given at ENU MATH2003, the European Conference on Numerical Mathematics and Ad vanced Applications, held in Prague, Czech Republic, from 18 August to 22 August, 2003. The importance of numerical and computational mathematics and sci entific computing is permanently growing. There is an increasing number of different research areas, where numerical simulation is necessary. Let us men tion fluid dynamics, continuum mechanics, electromagnetism, phase transi tion, cosmology, medicine, economics, finance, etc. The success of applications of numerical methods is conditioned by changing its basic instruments and looking for new appropriate techniques adapted to new problems as well as new computer architectures. The ENUMATH conferences were established in order to provide a fo rum for discussion of current topics of numerical mathematics. They seek to convene leading experts and young scientists with special emphasis on con tributions from Europe. Recent results and new trends are discussed in the analysis of numerical algorithms as well as in their applications to challenging scientific and industrial problems. The first ENUMATH conference was organized in Paris in 1995, then the series continued by the conferences in Heidelberg 1997, Jyvaskyla 1999 and Ischia Porto 2001. It was a great pleasure and honour for the Czech numerical community that it was decided at Ischia Porto to organize the ENUMATH2003 in Prague. It was the first time when this conference crossed the former Iron Courtain and was organized in a postsocialist country.
Product Details :
Genre |
: Mathematics |
Author |
: Miloslav Feistauer |
Publisher |
: Springer Science & Business Media |
Release |
: 2012-12-06 |
File |
: 873 Pages |
ISBN-13 |
: 9783642187759 |